
Units and Some Basics

SI Units

The International System of Units, the SI system1, is the modern metric system
of measurement, established in 1960 by international treaty at the 11th General
Conference on Weights and Measures (CGPM2). There are seven SI base units
for the following quantities, which are taken to be mutually independent:

Table 1: SI base quantities and their units
Base Quantity Base Unit

Name Symbol
Length Metre m
Mass Kilogram kg
Time Second s
Thermodynamic Temperature Kelvin K
Electric Current Ampere A
Luminous Intensity Candela cd
Amount of Substance Mole mol

The standards which determine the physical magnitude of these base quantities
are also decided by international agreement through the CGPM. For example:

• 1 kg is defined to be the mass of the ‘international prototype’, a lump of
platinum-iridium alloy kept at the International Bureau of Weights and
Measures (BIPM3) at Sèvres, just outside Paris.

• 1 m is the length of the path travelled by light in a vacuum in 1/299 792 458
of a second (note that this means that the speed of light, c, is fixed by
definition at 299 792 458 m s−1).

• 1 s is the duration of 9 192 631 770 periods of the radiation corresponding
to the transition between the two hyperfine energy levels of the ground
state of the Caesium-133 atom at 0 K.

• 1 K is the fraction 1/273.16 of the thermodynamic temperature of the
triple point of water.

• 1 mole is the amount of substance of a system which contains as many
elementary entities as there are atoms in 0.012 kg of carbon 12. This
number is Avogadro’s number, about 6.022×1023. The elementary entities
must be specified (for example, the amount of water molecules in a litre
of liquid water is about 55.6 mol, but the amount of hydrogen atoms in
the same volume is twice that, 111.2 mol).

Other quantities are derived from the seven base quantities, and many are given
their own names and symbols. Some important examples are listed in Table 2.

1SI is the abbreviation for Le Système International d’Unités
2Conférence Générale des Poids et Mesures
3Bureau International des Poids et Mesures



Table 2: Derived SI quantities and their units
Derived Quantity Derived Unit

Name Symbol Base Units
Force Newton N m kg s−2

Pressure Pascal Pa N m−2 = m−1 kg s−2

Energy Joule J N m = m2 kg s−2

Power Watt W J s−1 = m2 kg s−3

Frequency Hertz Hz s−1

Electric Charge Coulomb C s A
Electric Potential Difference Volt V W A−1 = m2 kg s−3 A−1

SI Prefixes

The series of prefixes and symbols of prefixes to form the names and symbols
of decimal multiples and sub-multiples (i.e. powers of 10) of SI units is given
in Table 3. Some things to note are:

• Prefixes are never mixed within the SI system. For example, the length of
the Cl-Cl bond in Cl2 is 2×10−10 m, which can be written as 200 pm (‘200
picometres’) or 0.2 nm (‘0.2 nanometres’) but not 0.2 mµm (‘0.2 millimi-
crons’). Similarly, the mass of the moon is about 7.35×1022 kg ≡ 73.5 Yg
(‘73.5 yottagrams’), not 73.5 Zkg. This is the case even though it is the
kilogram which is the base SI unit and not the gram.

• A good way of recalling the base units that comprise a derived SI unit
is to relate them through a famous and easy to remember formula. For
example,

F = ma→ 1 N ≡ 1 (kg)(m s−2),

KE = 1
2mv

2 → 1 J ≡ 1 (kg)(m s−1)2 ≡ 1 kg m2 s−2.

• A common source of error in calculations arises from a failure to correctly
account for units raised to powers, and care needs to be taken in making
conversions between units. For example, 1 cm3 ≡ (10−2 m)3 ≡ 10−6 m3.

Examples

1. A typical chemical bond vibrates with a period of about 2×10−14 s ≡ 20 fs
(‘20 femtoseconds’), a frequency of 5×1013 s−1 ≡ 50 THz (‘50 terahertz’).

2. These prefixes are often used in front of non-SI units as well. For example,
the human genome consists of 3164.7 million nuceotide bases (‘A’, ‘C’, ‘G’,
‘T’), which is about 3 ‘gigabases’.

3. Atmospheric pressure at sea level is approximately 100 kPa ≡ 105 Pa ≡
105 N m−2 ≡ 10 N cm−2.



Table 3: SI prefixes (common prefixes in bold)
Factor Prefix Symbol
1024 yotta Y
1021 zetta Z
1018 exa E
1015 peta P
1012 tera T
109 giga G
106 mega M
103 kilo k
102 hecto h
101 deca da
10−1 deci d
10−2 centi c
10−3 milli m
10−6 micro µ
10−9 nano n
10−12 pico p
10−15 femto f
10−18 atto a
10−21 zepto z
10−24 yocto y

Non-SI units

There are several other unit systems in common use, and conversions between
them are given below. Closely related to the SI system is the cgs system, another
metric system with base units including the centimetre, gram, and second4. For
example, the derived unit of force in cgs is the dyne: 1 dyn ≡ 1 cm g s−2 ≡
10−5 N.
Americans are inexplicably fond of the Imperial system, which used to contain
all sorts of silly definitions (an inch was once defined as the width of a man’s
thumb), but now has a fixed relationship to the SI system (e.g. 1 in ≡ 0.0254 m).
The shortcomings of the Imperial system are too numerous to go into here, but
suffice it to mention that pints are different sizes in the UK (578 ml) and US
(473 ml), a pound of gold doesn’t weigh the same as a pound of coal, and there
are at least three different types of calorie. All scientific calculations should be
carried out in SI (or at least metric) units.

Length

Distances on the scale of atoms and molecules are often reported in angstroms:

1 Å ≡ 10−10 m ≡ 0.1 nm.

4the SI system is also known as the MKS system for metre, kilogram, second



Volume

Although not strictly an SI unit name, the litre (symbol: L, l) is in common
usage:

1 L ≡ 1 dm3 ≡ 10−3 m3.

Mass

Although the SI system suggests that 1000 kg should be equal to 1 megagram,
the word ‘tonne’ (sometimes called a ‘metric ton’) is often used:

1 t ≡ 103 kg ≡ 106 g.

At the other end of the scale, atomic mass units are often used when referring
to the masses of molecules. 1 u is defined as the one-twelfth of the mass of a
12C atom. Because of the definition of the mole, this means that

1 u ≡ 1

1000NA
kg = 1.661× 10−27 kg,

where NA = 6.022× 1023 mol−1 is Avogadro’s constant.
The molar mass is the mass of one mole of a substance, usually expressed in
g mol−1.

Angle

The SI (derived) unit of plane angle is the radian (symbol: rad). It is still
common to see degrees (◦), minutes (′), and seconds (′′) in use, however:

1◦ ≡ (π/180) rad,

1′ ≡ (1/60)◦ ≡ (π/10 800) rad,

1′′ ≡ (1/60)′ ≡ (π/648 000) rad.

For example, Oxford is at a latitude of 51◦45′30′′ N, corresponding to a plane
angle of 0.903353 rad.

Time

Timescales significantly longer than a second are generally not reported in metric
units, but in the familiar minutes, hours and days:

1 min ≡ 60 s,

1 hr ≡ 60 min ≡ 3600 s,

1 day ≡ 24 hr ≡ 86 400 s.

Temperature

For historical reasons, thermodynamic temperatures are often still reported in
degrees Celsius (◦C). The exact conversion is given by the formula:

T/◦C = T/K − 273.15.



To convert a temperature in degrees Fahrenheit to degrees Celsius, use:

T/◦C = 5
9 (T/◦F− 32).

Pressure

The common non-SI units of pressure are the bar (cgs), atmosphere, Torr, and
millimetres of mercury:

1 bar ≡ 105 Pa ≡ 105 N m−2,

1 atm ≡ 101325 Pa ≡ 760 Torr,

1 mmHg = 133.3224 Pa.

1 mmHg is very nearly (but not exactly) equal to 1 Torr.

Energy

The Imperial unit of energy is the thermochemical calorie, defined by:

1 cal ≡ 4.184 J,

1 Cal ≡ 1 kcal ≡ 4184 J,

though several other definitions exist: for example, the 15◦C calorie is defined
as the amount of energy required to heat 1 g of water from 14.5◦C to 15.5◦C at
a constant pressure of 1 atm (1 cal15 = 4.1855± 0.0005 J) and the large IUNS5

calorie (≡ 4182 J) is popular as a measure of the energy content of food. It is
exactly this sort of lunacy that the modern SI system was designed to avoid.
For the small energies involved in individual atoms, the electron volt is a popular
unit:

1 eV = 1.60219× 10−19 J;

in thermodynamic calculations energies are often reported in kilojoules per mole:

1 kJ mol−1 = 1.6605× 10−21 J.

Concentration

In liquid chemistry, concentration is most usually measured in terms of either
the molarity or molality of a solution. The molarity, or molar concentration, of
a solution is the number of moles of a substance per dm3 (i.e. litre) of solution
and thus has units of M ≡ mol dm−3. Note that this is slightly different from
the amount of substance per litre of solvent since dissolving a substance in a
fixed amount of solvent will change its volume.
Molality is defined as the number of moles of a substance per kg of sovent
(not solution), and has units of mol kg−1. It is preferred to molarity because
the solvent mass is readily measured and is independent of temperature and
pressure, unlike the solution volume.

5International Union of Nutritional Sciences



Since 1 dm3 of water has a mass close to 1 kg at room temperature and 1 atm
pressure, the molarity and molality of a dilute aqueous solution are numerically
nearly equal.
Another common measure of concentration is the mole fraction, defined as the
number of moles of a particular substance divided by the total number of moles
of all substances present in a system.

Example

1 L of 40% (by volume) vodka contains approximately 32% ethanol by mass,
and weighs 0.988 kg. What is the molar concentration and mole fraction of
ethanol in the vodka?
Answer: The mass of ethanol present is

M(EtOH) = 0.32× 0.988 kg = 0.316 kg.

The molar mass of ethanol is 46 g mol−1, so the number of moles of ethanol is

n(EtOH) =
0.316 kg

0.046 kg mol−1
= 6.87 mol

Since the volume of the solution is 1 dm3, the ethanol concentration is 6.87 M.
The mass of water present is 0.988− 0.316 = 0.672 kg, corresponding to

n(H2O) =
0.672 kg

0.018 kg mol−1
= 37.3 mol

and so the mole fraction of ethanol is

x(EtOH) =
n(EtOH)

n(EtOH) + n(H2O)
=

6.87

6.87 + 37.3
= 0.16

Example

The current concentration of carbon dioxide in the atmosphere is about 385 ppmv
(parts per million by volume) and the air number density at sea level is about
2.7 × 1025 m−3 - i.e. there is this number of air molecules (of all types) per
cubic metre. Calculate the number density and the mass density of CO2.
Answer: The number concentration of CO2 is

(385× 10−6)× 2.7× 1025 m−3 = 1.0× 1022 m−3.

This is a molar CO2 density of

(1.0× 1022 m−3)

NA
= 1.7× 10−2 mol m−3

or, since the molar mass of CO2 is 44 g mol−1, a mass density of

1.7× 10−2 mol m−3 × (44 g mol−1) = 0.76 g m−3.



Quantity Calculus

Quantity calculus is a powerful way of handling calculations involving physical
quantities and their units. A physical quantity is considered to be the product
of a numerical value (i.e. pure number) and a unit:

physical quantity = numerical value × unit

In this way, the units in which a physical quantity is measured are included in
its specification, and they can be kept track of in calculations by applying the
usual rules of algebra. For example, the wavelength of blue light, λ (the physical
quantity) is about 450 nm, which may be written:

λ = 450 nm, or equivalently: λ/nm = 450.

Now, since the units m and nm are related by nm ≡ 10−9 m,

λ = 4.5× 10−7 m, or equivalently: λ/m = 4.5× 10−7

In equations, only pure numbers can be manipulated (for example, a number
cannot be raised to the power of a distance, and it is strictly meaningless to
take the natural logarithm of a temperature). Therefore, it is common in writing
equations to specify both the physical quantity and its units. For example, as
we have seen, to convert a temperature in in kelvin, T, to a temperature in
degrees celsius, ◦C:

T/◦C = T/K − 273.15.

T is a physical quantity, say 250 K; T/K is a pure number, 250. So to apply
the equation, subtracting the numbers 250 - 273.15 gives the number T/◦C =
−23.15, and the physical quantity T = −23.15◦C.
Quantity calculus is useful in tabulating the numerical values of physical quan-
tities and in labelling the axes of graphs. For example:

T/K 103 K/T p× 10−6/ Pa ln(p/106 Pa)
150 6.667 0.85 −0.1625
200 5.000 2.64 0.9708
298 3.336 6.97 1.9416

The usual rules of algebra are followed to interpret tables like this. So, for
example, the second entry in the second column, 103 K/T = 5.000 implies that
1/T = 5× 10−3 K−1 which is, indeed, 1/(200 K). An equivalent way of writing
this column heading would be (1/T )/10−3 K−1. The corresponding entry in
the third column, p×10−6/ Pa = 2.64 implies a pressure of p = 2.64/10−6 Pa ≡
2.64× 106 Pa ≡ 2.64 MPa.

Example

A second-order reaction A + B→ P obeys the rate law:

r =
d[P]

dt
= k[A][B]

where the units of the rate of reaction, r are conc s−1 where the derived SI unit
of molar concentration is conc = mol m−3. Therefore, the rate constant, k, must
have units of conc−1 s−1 = m3 mol−1 s−1.



Checking for Consistent Units

It is a good idea, at least to begin with, to get into the practice of writing the
units along with the value of physical quantities when doing numerical work.

Examples

1. Calculate the equilibrium constant for a reaction with ∆rG

 = 33 kJ mol−1,

at 298 K.

Answer: The equilibrium constant is related to the Gibbs Free energy
change of a reaction through the formula ∆rG


 = −RT lnK, so

K = exp

(
−∆rG




RT

)
= exp

(
− 33× 103 J mol−1

(8.314 J K−1 mol−1)(298 K)

)
= 1.6× 10−6.

Note that an equilibrium constant calculated in this way is dimensionless.

2. What is the mean free path (average distance between collisions) of N2

molecules at T = 298 K and p = 1 bar. The collision cross section of N2

is σ = 0.43 nm2.

Answer : The mean free path,

λ =
kBT√
2σp

=
(1.381× 10−23 J K−1)(298 K)√
2(0.43× 10−18 m2)(1× 105 Pa)

= 6.8× 10−8 m = 68 nm.

We can be sure that the answer will be in SI units (m) if we have used SI
units throughout the calculation, but to check the units convert them to
base SI units:

(J K−1)(K)

(m2)(Pa)
=

J

(m2)(N m−2)
=

J

N
=

kg m2 s−2

kg m s−2
= m

Standard Conditions

There are two important sets of conditions which are referred to as ‘standard’:

• Standard Temperature and Pressure (STP) is defined by IUPAC6 to be
a temperature of 0◦C ≡ 273.15 K and a pressure of 1 bar ≡ 105 Pa.
However, the older definition (prior to 1982) of standard pressure as
1 atm ≡ 1.01325× 105 Pa is still encountered.

• Standard Ambient Temperature and Pressure (SATP) refers to 25◦C ≡
298.15 K and 1 bar ≡ 105 Pa pressure. 25 ◦Cis sometimes referred to as
‘room temperature’ (though that would have to be quite a warm room).

6International Union of Pure and Applied Chemistry



The standard pressure of 1 bar is frequently used in thermodynamics, and is
given its own symbol:

p
 ≡ 1 bar.

The standard state of a substance is its pure form at p
 ≡ 1 bar and at a
specified temperature.
Avogadro’s principle states that equal volumes of gases at the same temperature
and pressure contain the same number of molecules, regardless of the identity of
the gases. It applies to ideal (or perfect) gases, and is a good approximation for
real gases in many instances. Stated another way, Avogadro’s principle implies
that a given amount of any gas at a specified temperature and pressure occupies
a particular volume. Specifically one mole of any ideal gas has a molar volume,
Vm, equal to:

Vm = 22.414 L mol−1 at 273.15 K, 1 atm

V 

m = 24.711 L mol−1 at STP (273.15 K, 1 bar)

V 

m = 24.790 L mol−1 at SATP (298.15 K, 1 bar)

In the case of liquid solutions, the standard state of a solute may be defined as
unit activity in a specified solvent at a given temperature, a = 1. For very dilute
aqueous solutions, activities are almost equal to molalities, m, in the sense:

a ≈ m/m


where the standard molality, m
 ≡ 1 mol kg−1, and to molarities (amount
concentrations), c:

a ≈ c/c


where the standard concentration, c
 ≡ 1 M ≡ 1 mol dm−3.

Errors and Uncertainty

All of science is based on empirical observations - that is, measurements made
with physical instruments. These are inevitably imperfect in the sense that
they provide an estimate of an assumed true value of a physical quantity. For
example, the potential difference across a given electrochemical cell has some
value which we may attempt to measure with a voltmeter. A number will be
displayed on this instrument and we need to be able to state how well we think
this represents the true voltage. At this point, it is important to distinguish
between accuracy and precision. Suppose the display reads 2.134 V, and that
a series of repeated measurements gives the same reading. The precision of the
measurement may then be stated as ±0.001 V, but there is a further question
to ask: how close is this value to the true value - in other words, how accurate is
the voltmeter? In general this can be quite a difficult question to answer, but an
indication is usually given by the manufacturer’s specification of the instrument.
For example, it may have been calibrated against a more accurate instrument
and found to have an accuracy of 0.2 %. In this case, the accuracy of our
measurement is about 0.004 V, and the displayed digits (precision) have given a
false impression of the uncertainty in our measurement. The true uncertainty (or
error) may be indicated along with the measurement by writing 2.134±0.004 V.
Now, assume we have made a series of measurements in an experiment, and de-
termined the error associated with each one. Typically, we will need to perform



some kind of algebraic manipulation of the data (adding it together, multiplying
by constants, taking square roots, etc...) in order to determine some physical
quantity of interest. The error associated with this final result is determined
by a procedure known as propagation of errors. For example, if we have two
independent (i.e. uncorrelated) measurements A and B, with associated errors
δA and δB, and add them to form a quantity X, the uncertainty in X, δX is
given by: (δX)2 = (δA)2 + (δB)2. Some more relations are given in Table 4.

Table 4: Propagation of uncorrelated errors
Algebraic relationship† Error in the result, δX
X = A±B (δX)2 = (δA)2 + (δB)2

X = cA (δX) = c(δA)
X = c(A×B) or X = c(A/B) (δX/X)2 = (δA/A)2 + (δB/B)2

X = ecA (δX/X) = cδA
X = ln(cA) (δX) = (δA/A)
X = Ac (δX/X) = c(δA/A)

† c is a precisely known constant

A full analysis of a calculation including propagation of errors requires estimates
of uncertainties in the input quantities, which are often not given in simple
problems. Nevertheless, answers to these problems should be expressed in a
way which gives some indication of their likely accuracy. A good rule of thumb
is to take any physical constants you need to one or two more significant figures
than the data given, and then to round down the final answer to the same
number of significant figures as this data.

Example

The air pressure at an altitude z is given approximately by the formula

p(z) = p(0)exp(−z/H),

where p(0) = 1 atm is the air pressure at sea level, and H is the scale height,
estimated to be 7 ± 1.5 km. What is the air pressure at the summit of Mt.
Everest (8848 m)?
Answer: Using quantity calculus, the equation for p(z) may be written:

p(z) = (1 atm)exp[−z/(7 km)]

and so p(8.848 km) = 0.28 atm.
To assess the uncertainty in this result, note that the greatest source of error is
in the estimate of H. The error in the quantity X = z/H is given by

(δX/X)2 = (δz/z)2 + (δH/H)2,

but since (δz/z)2 is negligible (the height of Everest is known to the nearest
metre):

δX =
δH

H
×X =

1.5

7
× 8.848

7
= 0.271.

This error propagates in the calculation of Y = exp(−X), such that (δY/Y ) =
δX and thus δY = 0.271(0.28 atm) = 0.076 atm. The final result may therefore
be quoted:

p = 0.28± 0.08 atm.
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1. The website of the International Bureau of Weights and Measures (BIPM,
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en/si/.

2. Quantities, Units and Symbols in Physical Chemistry (The Green Book),
2nd ed., I. Mills, T. Cvitas, K. Homann, N. Kallay, K. Kuchitsu, Blackwell
Science (1993).

3. The Choice of Names and Symbols for Quantities in Chemistry, I. M.
Mills, Journal of Chemical Education 66, 887-889 (1989).

4. On the History of Quantity Calculus and the International System, J. de
Boer, Metrologia 31, 405-429 (1995).

5. The Cambridge Handbook of Physics Formulas, G. Woan, Cambridge Uni-
versity Press (2000).

Exercises

1. Verify that the following formula for the speed of sound in a gas, c, gives
an answer with the correct units:

c =

√
γp

ρ
,

where p is the pressure of the gas, ρ is its density, and γ is the (dimen-
sionless) adiabatic index.

2. A harmonic oscillator may be thought of as a spring with the property that
it exerts a restoring force, F , proportional to its extension or compression,
x, relative to its unstretched length: F = −kx, where k is the spring force
constant.

(a) What are the units of k? Show that they consistent with its use in
defining the potential energy stored in the spring, V = 1

2kx
2.

(b) Show that the following expression for the vibrational frequency, ν,
of a mass, m, attached to a harmonic oscillator gives a quantity with
the units Hz:

ν =
1

2π

√
k

m

3. The mean speed of the molecules of an ideal gas is given by

c̄ =

√
8kBT

πm
,

where m is the molecular mass. Use this formula to calculate the mean
speed of nitrogen molecules at 298 K. The molar mass of N2 is 28.02 g mol−1.

4. What temperature has the same numerical value in ◦C and ◦F?

http://www.bipm.org/en/si/
http://www.bipm.org/en/si/
http://www.bipm.org/en/si/
http://www.bipm.org/en/si/


5. Car airbags inflate with nitrogen gas produced by the rapid thermal de-
composition of sodium azide, NaN3. What volume of gas (at SATP) is
produced from the complete decomposition of 120 g of NaN3? Take molar
masses M(Na) = 23 g mol−1 and M(N) = 14 g mol−1, and assume that
the nitrogen gas behaves ideally (pV = nRT ).

6. Harder. Why is the sky blue?

Hints: the ratio of the intensity of light scattered by small particles such as
air molecules to its incident intensity, I ′/I might depend on the following
quantities: c, the speed of light; λ, the wavelength of the light; r, the
distance of the scattering particles from the observer; V , the volume of
each particle; Ds the density of the scattering particles; and D, the density
of the surrounding medium.

The intensity of light is proportional to the square of the amplitude of the
light wave, so I ′/I ∝ (A′/A)2, and it is reasonable to expect

A′

A
∝ V and

I ′

I
∝ 1

r2

Derive an expression for the dependence of the (dimensionless) ratio I ′/I
on the above quantities by considering the units of each and arriving at a
unique expression involving a power of λ.


