
A Tutorial Introduction to Haskell1

Quentin Miller

Somerville College
Oxford
2020

1adapted from “A Tutorial Introduction to Orwell” by Philip Wadler and
Quentin Miller.

1 Introduction

To begin programming in Haskell, you’ll need to install it on your computer.
The Haskell Platform is an implementation that runs onWindows, MacOS X,
and Linux systems; it can be downloaded from

https://www.haskell.org/platform/

(Don’t worry if the package installer for your system provides an out-
dated version; it should be fine for this tutorial.) If you have any trou-
ble installing Haskell on your own computer, don’t hesitate to email me at
<quentin.miller@some.ox.ac.uk> for help.

The Haskell Platform will set up a compiler (the Glasgow Haskell Com-
piler or GHC) and an interpreter (the GHC interpreter or GHCi), which
are invoked from a command line in a terminal window with the commands
ghc and ghci respectively. In this tutorial, only the interpreter is needed.
Open a new terminal window and type ghci followed by a carriage return,
in response to the prompt. You should see something like this:

quentin$ ghci
GHCi, version 8.8.3: https://www.haskell.org/ghc/ :? for help
Prelude>

You are now in an interactive GHCi session. You can exit and return to a
terminal prompt by typing :quit (note that it begins with a colon) followed
by carriage return. If you haven’t managed to get to this point, email me for
help. Otherwise, read on ….

2

1

2 Sessions

Having installed Haskell Platform on your computer, you should be able to
execute the command ghci in a terminal window, and see this displayed:

quentin$ ghci
GHCi, version 8.8.3: https://www.haskell.org/ghc/ :? for help
Prelude>

You are now in a GHCi session: the Prelude> at the end is a prompt,
and if you type an arithmetic expression and press return, the interpreter
will evaluate the expression, display the result, and present a new prompt:

Prelude> 2+1
3
Prelude> 3
3
Prelude> 2+3*2
8
Prelude> (2+3)*2
10
Prelude> (2+3)/2
2.5
Prelude> 5 `div` 2
2
Prelude> 5 `mod` 2
1

Notes:

• Multiplication is denoted by an asterisk (*).

• Without parentheses, the usual arithmetic rules for operator prece-
dence are assumed; e.g. 2+3*2 is taken to mean 2+(3*2).

• Integer division is performed by the operators `div` and `mod` (en-
closed in back-quotes), which give the quotient and remainder respec-
tively.

2

As well as individual numbers, Haskell can work with lists of numbers in
square brackets, separated by commas:

Prelude> [3, 2, 2, 4]
[3,2,2,4]

A series of consecutive numbers is given by a pair of dots separating the first
and last elements:

Prelude> [3..11]
[3,4,5,6,7,8,9,10,11]

If you give the second element of the series, the same interval will be used
for the rest of the series:

Prelude> [3,5..11]
[3,5,7,9,11]
Prelude> [3, 4.5 .. 9]
[3.0,4.5,6.0,7.5,9.0]
Prelude> [11,10..3]
[11,10,9,8,7,6,5,4,3]

Haskell can add or multiply together all the elements of a list:

Prelude> [1..5]
[1,2,3,4,5]
Prelude> sum [1,2,3,4,5]
15
Prelude> sum [1..5]
15
Prelude> product [5..7]
210

3

⋆ Exercise 1:
What is the value of [3..4]? [3..3]? [3..2]?

⋆ Exercise 2:
Use lists (with the .. notation) to calculate the factorial values 3!, 5!, and
10!.

⋆ Exercise 3:
The expressions you gave in the previous exercise should have the same pat-
tern as one another, differing only in the 3, 5, and 10. If you substitute 1 or
0 for the 3, 5, and 10, do you get the correct values for 1! and 0!? (Recall
that by definition, 1! = 1 and 0! = 1.)

As well as typing an expression for evaluation after the Prelude> prompt,
you can type a command. All commands begin with a colon, and they can
be given in full or abbreviated to the first letter. The first command you’ll
need to know about is the quit command (:quit or :q) that will end the
GHCi session.

2

3 Scripts

The prompt in our interactive sessions is Prelude> — this refers to a file
called Prelude.hs that contains useful definitions such as such as sum and
product that we can then use in the session. Such a file of Haskell definitions
is called a script. Prelude.hs (often referred to as the standard prelude)
is loaded automatically when we start the Haskell interpreter, but we can
load additional scripts containing some definitions of our own. The filename
extension .hs stands for Haskell Script.

A script file contains plain text, so we may create it using an ordinary
text editor. Stop the session (with the :q command), and start up an editor
in your terminal window. (Any plain text editor will do; for example emacs
or vi which run directly in the terminal window, or notepad or TextEdit
which run in a separate window.) Create a file with the name script1.hs,
and type the following definitions into it:

4

square x = x*x
cube x = x*x*x
percent n x = (x*n) `div` 100

After starting the interpreter (with ghci) we can load the definitions from
our new script into the session by typing :load script1.hs to which the
interpreter should respond:

Prelude> :load script1.hs
[1 of 1] Compiling Main (script1.hs, interpreted)
Ok, modules loaded: Main.
*Main>

The new *Main> prompt indicates that this session includes some user-
defined functions as well as those defined in the standard prelude. We can
now evaluate expressions containing our new definitions:

*Main> square 3
9
*Main> cube 3
27
*Main> square (cube 3)
729
*Main> percent 12 64
7
*Main> percent 12 (square 8)
7

Notes:

• Names of functions and their parameters must not begin with capital
letters.

• Haskell’s notation for functions differs from that of most other pro-
gramming languages. f x means “function f applied to argument x”
(in the same way that “sinx” means the sine function applied to x in
conventional mathematical notation). In a language such as C, Basic,
or Java this would be written f(x).

5

• Parentheses can however be placed around any Haskell expression or
any of its constituent sub-expressions; thus we could write f(x) but it
would mean the same thing as f x or (f) x or (f x) or (((f))(x)).

Without parentheses, function application always takes precedence over infix
operators (i.e. operators such as + and * that appear between their operands.)
Thus, f x + y is the same as (f x) + y. Adding extra space has no effect
on precedence (but it might make an expression more human-readable):

*Main> square 3+5
14
*Main> square 3 + 5
14
*Main> (square 3) + 5
14
*Main> square (3 + 5)
64

A Haskell expression of the form a b c is taken to mean the function a
applied to arguments b and c. So if we want to take the square of the cube of
3, we must write this as square (cube 3). Without parentheses, it would
be equivalent to (square cube) 3 — where cube rather than (cube 3) is
the argument of square — which is not what we want.

⋆ Exercise 4:
Add to your script file the definition of a new function factorial which
calculates the factorial of a number. After changing and saving the script
file, load it into a session to test it. If the editor is running in the same
terminal window as the interpreter, you will need to exit the editor, invoke
ghci, and execute the :load command. If the editor is running in another
window you don’t need to stop and start GHCi; just type :reload or :r
(remembering to save the edited script first).

Test your factorial function on several values, including 0 and 1.

2

6

4 Functions

Haskell is called a functional language because it can manipulate functions
in the same way it manipulates numerical and other values. The standard
prelude contains a map function which, when applied to another function and
a list, applies that function to every element in the list:

*Main> map square [1,5,10]
[1,25,100]
*Main> map square [0..9]
[0,1,4,9,16,25,36,49,64,81]

The list needn’t be given explicitly within square brackets; it might be the
result of another calculation:

*Main> map cube (map square [1,5,10])
[1,15625,1000000]
*Main> map square (map square [0..9])
[0,1,16,81,256,625,1296,2401,4096,6561]

A function, in Haskell, is any expression that can be applied to another
expression. Some functions have names (square, map, etc.), but a nameless
function can be created. One way of creating such an anonymous function
is with the composition operator, denoted by a dot (.). When applied to two
functions, it composes them into a single “pipelined” function which uses the
output of one as the input to the other. Specifically, for any functions f and
g, the effect of applying their composition (f.g) to an argument is defined by

(f.g) x = f (g x)

Thus, f.g is a function like any other; the left-hand side of the above
equation shows that it can be applied to an expression, and the right-hand
side shows what the effect of such an application is. We can rewrite our
earlier example of map cube (map square [1,5,10]) as the mapping of a
single composed function, rather than two separate mappings:

*Main> map (cube.square) [1,5,10]
[1,15625,1000000]

7

Anonymous functions can also be created by partial application. Our
script file contained the definition

percent n x = (x*n) `div` 100

which says that “percent, when applied to any n and x is equal to
(x*n) `div` 100”. Another way of saying that is “percent, when ap-
plied to any n, is an expression that when applied to any x is equal to
(x*n) `div` 100”. Remembering that any expression that can be applied
to another expression is by definition a function, that means that percent 25
is an anonymous function that yields 25% of any value to which it is applied.
Here is a list of numbers, all scaled by 25% (rounded down):

*Main> [0,10..100]
[0,10,20,30,40,50,60,70,80,90,100]
*Main> map (percent 25) [0,10..100]
[0,2,5,7,10,12,15,17,20,22,25]

(The parentheses in the above example are necessary; we want percent —
not map — to be applied to 25.) As percent 25 is a function, it can be
composed with another function:

*Main> map square [0..10]
[0,1,4,9,16,25,36,49,64,81,100]
*Main> map (percent 25 . square) [0..10]
[0,0,1,2,4,6,9,12,16,20,25]

A special notation allows us to partially apply infix operators. A section is
the partial application of an operator, enclosed in parentheses. An expression
of the form x @ y, where @ is any infix operator (such as +, *, or `div`) can
be given in any of these ways, all of which represent the same value:

x @ y
(@) x y
(x @) y
(@ y) x

8

So for any x, (+1) x is equivalent to x+1, hence we can use (+1) as a function
that increments its argument:

*Main> [0..9]
[0,1,2,3,4,5,6,7,8,9]
*Main> map (+1) [0..9]
[1,2,3,4,5,6,7,8,9,10]

There is one exception to these equivalences: - can be used as an infix or
a prefix operator, so sections of - are interpreted as follows:

(-) binary - (subtraction)
(- a) unary - (negation)
(a -) binary - (subtraction)

Haskell allows any function of two parameters to be used as an infix op-
erator, by enclosing it in back-quotes (`). You’ve seen this with x `div` y,
which is equivalent to div x y. The map function has two parameters, so
you can use it as an infix operator:

*Main> map (+1) [0..9]
[1,2,3,4,5,6,7,8,9,10]
*Main> (+1) `map` [0..9]
[1,2,3,4,5,6,7,8,9,10]

When used in a section, this can partially apply a function to its second
rather than its first parameter. For example, we’ve seen that percent 25 is
a function that yields 25% of the value to which it is applied. Now observe
that

percent n x = n `percent` x = (`percent` x) n

so (`percent` 500) is a function that when applied to n yields n% of 500:

*Main> map (`percent` 50) [0..9]
[0,0,1,1,2,2,3,3,4,4]
*Main> map (`percent` 500) [0..9]
[0,5,10,15,20,25,30,35,40,45]

9

⋆ Exercise 5:
Write an anonymous function that doubles its argument and then squares
the result. Test it by mapping it over the list [0..9].

⋆ Exercise 6:
(Challenge!) As well as lists of numbers, we can have lists of lists; for ex-
ample, [[1..5], [10], [22,23,24]] is a three-element list, each of whose
elements is a list of numbers. Fill in the “?” in the expression below so that
each number in each list is doubled and then squared:

*Main> map ? [[1..5], [10], [22,23,24]]
[[4,16,36,64,100], [400], [1936,2116,2304]]

2

10

5 Function Definitions

Functions can be defined using recursion and conditionals. For example, one
may define a function to raise x to the nth power as follows:

power x n = if n==0 then 1
else if n>0 then x * power x (n-1)
else error "negative power"

(If you type this definition into a script to try it, you must indent the
lines as they are shown above. The reason for this is explained below.)

Notes:

• power x n is the application of the power function to two arguments
x and n.

• == is the operator that tests two expressions for equality. It is written
this way to distinguish it from the = which separates the two sides of
an equation in a function definition.

• In Haskell, conditional expressions have the familiar form: if e1 then
e2 else e3

• The error function is built into Haskell. It allows you to generate an
error message of your choice.

Another useful language feature which Haskell provides is a “guarded
expression”. The sign function below takes an argument x. The remaining
parts of the function are protected by “boolean guards”. One of the guards
(x>0, x==0 and x<0) will evaluate to True. The expression associated with
the True guard is returned as the result of the function.

sign x | x>0 = 1
| x==0 = 0
| x<0 = -1

The right-hand side of an equation may also be followed by a where clause,

11

which defines the value of one or more names. For example, this definition
gives the number of solutions of a polynomial of the form ax2 + bx+ c = 0:

numberOfRoots a b c | disc > 0 = 2
| disc == 0 = 1
| disc < 0 = 0

where disc = b*b - 4*a*c

Defining disc as a local value not only makes the definition easier to
read, it improves efficiency by ensuring that it is calculated only once.

A where clause in Haskell may define constants (as above) or functions
of any number of arguments.

In many languages, extra symbols (such as BEGIN, END and ;) are needed
to indicate the extent of an expression. In Haskell, this information is indi-
cated by indentation: definitions at the same level (i.e. at the top level or
within the same where clause) must begin in the same column. For example:

inc x = x + 1
dec x = x - 1

is interpreted as two function definitions, while

inc x = x + 1
dec x = x - 1

would be interpreted as the single definition

inc x = x + 1 dec x = x - 1

which is meaningless and will generate an error.

Thus, long definitions may be broken across lines simply by indenting all
but the first line of the definition:

12

bigAndSmall = (aBigNumber, aSmallerNumber)
where aBigNumber = 1 + 1 + 1 + 1 + 1 + 1 +

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
1 + 1 + 1 + 1 +
1 + 1

aSmallerNumber = 1 + 1 + 1

⋆ Exercise 7:
Define a function fib such that fib n gives the nth Fibonacci number. These
numbers are defined by:

F0 = 0
F1 = 1

Fk+2 = Fk + Fk+1

Be careful how you use parentheses in your definition: function applica-
tion in Haskell binds more tightly than infix operators. For example,

f x + 3

is the sum of (f x) and 3, while

f (x + 3)

is the function f applied to (x+ 3).

2

13

6 Basic Data Types

Life would be dull if we could write functions only on numbers. In addition to
numbers, Haskell provides operations on booleans, characters, lists, tuples,
and functions, as well as on other types the user may care to define.

Integers are written in standard decimal notation, e.g., 42. Standard
operations on integers are +, -, *, ^, `div`, and `mod`, and prefix -. The
boolean values are written True and False. Boolean values are given by the
comparison operators: ==, /= (not equal), <, >, <=, and >=. Boolean values
may also be combined using not, &&, and || (not, and, and or respectively).

2

7 Lists

Lists are written enclosed in square brackets with commas separating el-
ements, for example [1, 2, 3]. The empty list is written [], and a list
containing just the number four is written [4]. (Spaces between elements, or
in an empty list, are optional.) One may have lists of any type, for example
[True,False] is a list of booleans and the nested list [[1,2,3], [], [1]]
is a list of lists of integers. All elements of a list must have the same type.

The operator : (pronounced cons) adds an element to the front of a
list. For example, 1:[2,3] is [1,2,3] and 4:[] is [4]. In fact, [1,2,3]
is just an abbreviation for 1:2:3:[] (which is in turn an abbreviation for
1:(2:(3:[])), since : is right-associative).

When a list is created by prepending element x to list xs by x:xs, we
call x the head of the list and xs the tail of the list.

Other operations on lists are ++ (append), length, and !! (index). And
as we saw earlier, [m..n] is evaluated as the list of numbers from m up to
n, while [m, n..o] yields the list of numbers from m up to o going by steps
of (n−m). If m > n, then the sequence will descend to o. For example:

14

*Main> [1,2] ++ [3,4]
[1,2,3,4]
*Main> length [0,1,2]
3
*Main> [10,11,12]!!1
11
*Main> [3..5]
[3,4,5]
*Main> [-8 .. -8]
[-8]
*Main> [5..3]
[]
*Main> [5,10..33]
[5,10,15,20,25,30]

Notes:

• In the example of [-8 .. -8], there must be a space between the ..
and the - to prevent them from being interpreted as a single symbol.

• Indexing begins at zero.

One can define new functions on lists using recursion and patterns on the
left-hand side containing [] and :. The following function squares every
element of a list (assuming we still have our square function from earlier):

squares [] = []
squares (x:xs) = square x : squares xs

Note:

• All lists are of the form [] or the form (x:xs) — any non-empty
list has a first element and a (possibly empty) tail — thus squares is
defined for all integer lists (i.e. it is a total function).

15

⋆ Exercise 8:
Write a recursive function listinsert which takes a value and a sorted list,
and yields the list with the value inserted into it so that the result is still
sorted. listinsert should be total; thus you will need an equation for each
form of list:

listinsert t [] = ...
listinsert t (x:xs) = ...

Hint: In the second equation, if t ≤ x, what will the first element of the
result be, and what will the remainder of the result be? What if t > x? Use
an “if” clause to distinguish between these cases.

⋆ Exercise 9:
Using listinsert, write a recursive function listsort which sorts a list.
Make sure that listsort is total.

2

8 Characters and Strings

Characters are written enclosed in single quotes, such as 'a'. The function
ord converts a character to the integer corresponding to its ASCII code, and
chr is the inverse. For example, ord 'a' is 97, and chr 97 is 'a'.

The ord and chr functions are in a script called Char; if you want to use
these functions you need to ensure that the Char script is loaded. You can
do this by putting the line

import Data.Char

as the first line of your script file.

A string is just a list of characters. For example, "abc" is equivalent to
['a', 'b', 'c']. One may manipulate strings in the same way as lists; for
example, "Hi " ++ "there!" is evaluated as "Hi there!".

16

⋆ Exercise 10:
Characters have a well-defined ordering. If you have written the listsort
function from the above exercise, try applying it to some strings.

⋆ Exercise 11:
Define a function nextlet which takes a letter of the alphabet and yields
the letter coming immediately after it. Assume that 'a' follows 'z', and
'A' follows 'Z'. Hint: Remember that if you want to use the ord and chr
functions, the line import Data.Char must appear at the top of your script.

⋆ Exercise 12:
Define a function digitval which converts a digit character to its corre-
sponding numerical value.

2

9 Tuples

All elements of a list must have the same type. Collections of two or more
values of (possibly) different types may be expressed as tuples; for exam-
ple (1, 2, 'a') is a triple comprising an integer, another integer, and a
character.

The operation zip converts two lists to a list of pairs; for example
zip [1,2,3] "abc" is evaluated as [(1,'a'), (2,'b'), (3,'c')]. The
result list will have the same length as the shorter of the two input lists.
Thus, zip "hello" [4,2] is evaluated as [('h',4), ('e',2)].

⋆ Exercise 13:
The order operators < and > are defined for tuples. Experiment with these
to see how tuples are ordered.

⋆ Exercise 14:
Suppose a date is represented by a triple of integers (day,month, year). Us-
ing the knowledge gained from the previous exercise, define a function age
that takes two dates, the first being the birth date of some individual P and
the second the current date, and gives the age of P as a whole number of
years. Hint: Your function can use tuple patterns on the left-hand side to
extract the components of the dates:

age (d,m,y) (dc,mc,yc) = ...

17

⋆ Exercise 15:
Write a function that converts a date given as a triple of integers (e.g.
(15,4,1994)) to a string representation ("April 15th, 1994"). Hint: the
built-in function show will convert a number to its string representation.

2

10 Comprehensions

The list comprehension notation makes it easy to describe certain common
operations on lists. This notation is very similar to set comprehensions from
set theory. It will be explained first by example; then a more precise definition
will be given.

The function that squares every element of a list (seen previously) can
be defined as:

squares xs = [x*x | x<-xs]

Similarly, a function that squares only the odd elements of a list and discards
the rest can be defined by:

oddsquares xs = [x*x | x<-xs, x`mod`2 == 1]

Vector addition (add corresponding elements of two lists) can be defined
using comprehension and the zip function on pairs:

vecadd xs ys = [x+y | (x,y) <- zip xs ys]

The cartesian product of two lists (a list of all pairs with one member
from each list) can be defined by:

cp xs ys = [(x,y) | x<-xs, y<-ys]

18

For example, cp [1,2] "abc" yields the list:

[(1,'a'), (1,'b'), (1,'c'), (2,'a'), (2,'b'), (2,'c')]

Note that the second variable changes more rapidly then the first.

The final example is a functional version of Quicksort:

qsort [] = []
qsort (x:xs) = qsort [u | u<-xs, u<x] ++

[x] ++
qsort [u | u<-xs, u>=x]

qsort works as by considering the two possible forms of a list (empty and
non-empty), and defining what a sorted version of each form is:

• A sorted version of an empty list is the empty list.

• A sorted version of a list consisting of an element x and the other
elements xs is a sorted list of those elements of xs which are less than
x, followed by x, followed by a sorted list of those elements of xs which
are greater than x.

Here is a precise, if compact, definition of list comprehensions. A com-
prehension has the form [e | q1, …, qn], where e is an expression (of type t),
and q1 . . . qn are qualifiers; the comprehension has type [t]. Each qualifier qi is
either a generator or an expression of type boolean. Each generator has the
form pi <- ei, where pi is a pattern (of type ti) and ei is an expression (of type
list of ti). The pattern pi may contain variables, which are local variables
whose scope is the initial expression e and the qualifiers q(i+1) . . . qn.

19

⋆ Exercise 16:
Using a list comprehension and the sum function, define a function for count-
ing the number of negative integers in a list.

⋆ Exercise 17:
Define xn using a list comprehension. Hint: Don’t use recursion; think about
an informal definition of what xn means.

⋆ Exercise 18:
Define a function which lists the divisors of a positive integer.

2

11 Lazy Evaluation

Say that we wish to find the first perfect number. (A number is perfect if the
sum of its factors, including 1 but not including the number itself, is equal
to the number.) If we know that the first perfect number is less than 1000
then we could write:

factors n = [i | i <- [1..n-1], n`mod`i == 0]
perfect n = sum (factors n) == n
firstperfect = head [n | n <- [1..1000], perfect n]

(The function head gives the first element of a non-empty list.) This
program is correct, but there are two difficulties. First, the program appears
to do rather more work than necessary, since it appears to find a list of all
perfect numbers up to 1000, and then throw away all but the first (which is
6). Second, it is annoying to have to give an arbitrary limit, such as 1000.

These problems are solved by the Haskell evaluation strategy known as
lazy evaluation. In lazy evaluation, only those parts of the program necessary
to calculate the answer are evaluated. This means that only the first element
of the list will be calculated by the program above, so that it in fact does no
extra work. Further, it means that one is allowed to create infinite structures,
which are expanded in memory only as needed. For example, [1..] yields
the infinite list [1, 2, 3, . . .].

20

*Main> [1..]
[1, 2, 3, 4, 5, 6, 7, 8Interrupted.

The interpreter would have printed numbers indefinitely, had the user not
interrupted the calculation by pressing CTRL-C. The calculation could not
have completed in finite time.

Now look what happens when an expression requires only a finite part of an
infinite list:

*Main> head [1..]
1

*Main> [2,4..]
[2, 4, 6, 8, 10, 12, 14, 16,^C{Interrupted!}

*Main> [2,4..] !! 3
8

As soon as enough elements of the list have been calculated so that the
required one is available, no further elements of the list are generated (unless
they become needed later).

We may define the infinite list of all perfect numbers by writing:

perfects = [n | n<-[1..], perfect n]

Given this script, we can have the following session:

*Main> head perfects
6

*Main> perfects
[6,28,496^CInterrupted.

The first term, head perfects, causes the first perfect number to be
printed. The second term, perfects, causes the infinite list of perfect num-
bers to be printed. The interpreter will continue searching for the next
element of this list forever, or until an interrupt is typed.

21

Infinite lists may also be created using where clauses. For example:

dither = [yesno, noyes]
where yesno = "YES" : noyes

noyes = "NO" : yesno

defines dither to be a list containing two infinite lists:
(["YES", "NO", "YES", ...], ["NO", "YES", "NO", ...]). If we
try to print the whole of dither we will never get past the first list; however
if we selectively print the second list then none of the first list will need to
be calculated, and we can see as much of the second list as we please:

? dither
[["YES", "NO", "YES", "NO", "YES", "NO"^C{Interrupted!}

? dither!!0

["YES", "NO", "YES", "NO", "YES", "NO"^C{Interrupted!}

? dither!!1
["NO", "YES", "NO", "YES", "NO", "YES"^C{Interrupted!}

Another property of lazy evaluation is revealed by the following script:

k x y = x
loop = loop

What is the value of k 42 loop? In many languages, the answer is that
the program enters an infinite loop. But in a language with lazy evaluation,
such as Haskell, the answer is 42.

22

⋆ Exercise 19:
Find the 100th prime number. Hint: Look at the above definitions for finding
perfect numbers. Now, define a function which tests whether a number is
prime; then define a list of all prime numbers; then use !! to select the 100th
element.

⋆ Exercise 20:
(Challenge!) Define a list of all pairs (x, y) of nonnegative integers. Be careful
to ensure that your answer is not restricted to cases where y = 0, or cases
where x ≤ y.

⋆ Exercise 21:
(Challenge!) A pythagorean triple is a triple (x, y, z) of positive natural num-
bers such that x2 + y2 = z2. Define the list of all pythagorean triples. The
list shouldn’t include triples that are just rearrangements of other triples in
the list; for example it shouldn’t include both (3, 4, 5) and (5, 3, 4). A bigger
challenge would be to exclude triples that are scalings of other triples in the
list; for example not including both (3, 4, 5) and (6, 8, 10).

2

12 Higher-Order Functions

One important property of functional languages is that functions are values,
just as numbers or lists are. Thus, a function may be an argument of a
function, the result of a function, an element in a list, and so on. For example,
the function

map f xs = [f x | x<-xs]

takes two arguments, a function f and a list xs, and applies f to every
element of xs.

(Note that map, as well as foldr, sum, and product (below) are already
defined in the standard prelude.)

A function may also be “partially applied” by giving only some of its
arguments. For example, here is yet another way of defining the function

23

that squares every element of a list:

squares = map square

24

A Haskell definition is in the form of an equation; i.e. a declaration
that two things are equal. In mathematics, we may always substitute an
expression for something else which it is equal to. Therefore given the
above expression, the interpreter can evaluate squares [1,2,3] by replacing
squares by map square, yielding map square [1,2,3]. This is an instance
of map f x, which by our definition can be replaced by [f x|x<-xs], yield-
ing [square x|x<-[1,2,3]]. According to the definition of square given
earlier, square x can be replaced by x*x, yielding [x*x|x<-[1,2,3]]. Thus
the final result is calculated to be [1,4,9].

This style of programming can be quite powerful. For example, the fol-
lowing function defines a common pattern of computation:

foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

Functions to find the sum and product of all the elements of a list can be
defined by:

sum = foldr (+) 0
product = foldr (*) 1

Note:

• To pass an infix operator such as + or * as an argument to a function,
it must be written as (+) or (*).

Informally, given a binary operator ⊕ and an object e, foldr (⊕) e xs
replaces each : in xs with ⊕ and the [] with e. Thus, it converts

x0 : x1 : x2 : . . . []

to
x0 ⊕ x1 ⊕ x2 ⊕ . . . e

With that in mind, let’s have another look at how sum works:

sum [x0, x1, x2, x3, . . . xn] = sum (x0 : x1 : x2 : x3 : . . . : xn : [])
= foldr (+) 0 (x0 : x1 : x2 : x3 : . . . : xn : [])
= (x0 + x1 + x2 + x3 + . . .+ xn + 0)

25

Another useful higher-order function is (.) (pronounced “compose”), defined
by:

(f . g) x = f (g x)

Composition is not of much use when the x argument is present; one could
achieve the same thing simply by writing the expression in the form f (g x).
It is, however, very useful for combining functions without having to refer
to their arguments. For example, square.cube is a function which when
applied to an argument, cubes it and then squares the result. abs.sum is a
function which calculates the absolute value of the sum of a list of numbers.

⋆ Exercise 22:
What is the effect of applying foldr (:) [] to a list? Try to work out the
answer away from the computer before trying it with GHCi.

⋆ Exercise 23:
The standard prelude function max gives the greater of its two arguments.
Explain what is wrong with the following definition of sqmax, which is meant
to square the greater of its arguments:

sqmax = square.max

2

13 Type Declarations

The type-checker automatically deduces the type of all functions used in a
program. Thus, type declarations are completely optional. However, pro-
grams are often clearer if they contain some type declarations as well. Also,
the type-checker can sometimes give more helpful error messages if it knows
the intended types of functions.

26

Type declarations are written in the form name1, …, namen :: type,
where the names are those of functions or other values. Some basic types
are:

Int integer
Bool boolean
(t1,t2) type t1 paired with type t2
[t] list of elements of type t
t1 -> t2 function from type t1 to type t2

For example:

square, cube :: Int -> Int
squares :: [Int] -> [Int]
(+), (*) :: Int -> Int -> Int

The arrow representing functions is right-associative, so the type of (+)
is Int->(Int->Int); when it is applied to an integer (its left-hand operand),
the result is a function that can be applied to a second integer (its right-hand
operand) yielding an integer result.

Functions that are less restrictive of their argument and result types can
use type variables:

map :: (a -> b) -> [a] -> [b]
foldr :: (a -> b -> b) -> b -> [a] -> b

Note:

• A type variable must consist of a single lower-case character.

If a type contains type variables, it is said to be polymorphic. For example,
the function map has the type given above for any values of a and b. If
we let a and b both be Int, then we see that one possible type of map
is (Int->Int) -> [Int] -> [Int], so that the application map square is
well-typed, and itself has the type [Int]->[Int].

27

⋆ Exercise 24:
Add type declarations to your definitions (functions and constant values)
from previous exercises. After adding each type declaration, reload the script
file to check whether the GHCi type-checker complains.

⋆ Exercise 25:
(Challenge!) Using only pencil and paper, work out the type of the com-
position operator (.). Remember that each of its function arguments may
have type a -> b rather than a -> a. Confirm your answer by executing
:type (.) in a GHCi session.

2

14 Type Abbreviations

One may give a new name to an existing type by a declaration of the form
type name = type. The name may subsequently be used anywhere in place
of the equivalent type. For example,

type MyString = [Char]

addstop :: MyString -> MyString
addstop s = s ++ "."

Note:

• Type names must begin with a capital letter.

2

28

15 User-Defined Types

The user may define new types. Here is a definition of a tree data type:

data Tree a = Leaf a | Pair (Tree a) (Tree a)

It might be read as follows: “A Tree of a is either a Leaf, which contains
an a, or a Pair, which contains a Tree of a and a Tree of a.” Here a is what is
called a generic type variable; it stands for the type of elements of the tree,
which may be any type. Pair and Leaf are called constructors.

Note:

• A constructor name must begin with a capital letter.

The command :type can be used to find the type of any expression. For
example:

*Main> :type Pair (Leaf 'a') (Leaf 'b')
Pair (Leaf 'a') (Leaf 'b') :: Tree Char

*Main> :type Leaf (Pair (Leaf "stop") (Leaf "go"))
Leaf (Pair (Leaf "stop") (Leaf "go")) :: Tree (Tree [Char])

But Pair (Leaf "stop") (Leaf 'b') is not a legal tree (the declaration
of Tree demands that all leaves in a tree must have elements of the same
type), and will cause a type error to be reported:

*Main> :type Pair (Leaf "stop") (Leaf 'b')
<interactive>:1:21: error:

• Couldn't match type ‘Char’ with ‘[Char]’
Expected type: Tree [Char]

Actual type: Tree Char
• In the second argument of ‘Pair’, namely ‘(Leaf 'b')’
In the expression: Pair (Leaf "stop") (Leaf 'b')

29

The constructors Leaf and Pair may appear on the left-hand side of
equations, as in the following function definition:

count (Leaf x) = 1
count (Pair x y) = (count y) + (count x)

For example, count (Pair (Leaf 'o') (Leaf 'h')) returns the value 2.

New types do not necessarily involve type variables. For example, the
type Bool is defined (in the standard prelude) as

data Bool = False | True

⋆ Exercise 26:
Write a function that gives a list of the values at the leaves of a Tree. Hint:
There are two forms of tree to consider:

leaves :: Tree a -> [a]
leaves (Leaf x) = ...
leaves (Pair t0 t1) = ...

Remember that the right-hand side of each equation must return a list type.

⋆ Exercise 27:
Write a function treemap which applies a function to each leaf value in a
tree, just as map applies a function to each element in a list. Hint: The
result will be a tree with the same structure as the argument (but different
leaf values):

treemap :: (a -> b) -> Tree a -> Tree b
treemap f (Leaf x) = Leaf (...)
treemap f (Pair t0 t1) = Pair (...) (...)

30

To test the above, define a Tree-valued constant in your script file; for exam-
ple:

t0 :: Tree Int
t0 = Pair (Pair (Pair (Leaf 3) (Pair (Leaf 0) (Leaf 1)))

(Pair (Leaf 5) (Leaf 8)))
(Pair (Leaf 1) (Leaf 1))

You will also need the function

showTree (Leaf x) = show x
showTree (Pair l r) = "<" ++ showTree l ++ "|" ++ showTree r ++ ">"

to show the results of your calculation.

Now in the session, try evaluating such expressions as leaves t0,
treemap square t0, and leaves (treemap square t0).

2

16 Comments

There are two ways of indicating comments in a Haskell script.

1. Anything between the symbol -- and the end of the line is treated as
a comment.

2. Any text between the symbol {- and the symbol -} is treated as a
comment.

Note that either form of comment can contain further comments within
it – the whole outermost comment will be ignored by the interpreter.

2

31

17 Errors

GHCi always reduces an expression as far as possible. If an expression cannot
be further reduced because it is in error, the interpreter will mark it as such.
Expressions marked as errors are printed surrounded by curly braces.

Here is a sample from a session:

*Main> [2 `div` x | x<-[-4..4]]
[-1,-1,-1,-2,*** Exception: divide by zero

GHCi computes the first four results before reporting an error.

Haskell has a built-in function called error whose type is String->a.
This is a somewhat odd function: From its type it looks as if it is returning
a value of a polymorphic type about which it knows nothing, since it never
receives a value of that type as an argument!

In fact, there is one value “shared” by all types: ⊥ (bottom). Indeed,
semantically that is exactly what value is always returned by error (all errors
have the value ⊥). However, we can expect that a reasonable implementation
will print the string argument to error for diagnostic purposes. Thus this
function is useful when we wish to terminate a program when something has
“gone wrong.” For example, a sensible way to define the head function on
lists would be:

head (x:xs) = x
head [] = error "head []"

2

32

Appendix: Some Useful Session Commands

Any command may be abbreviated to :c where c is the first character in the
full name.

:load filenames load modules from specified files
:load clear all files except prelude
:add filenames read additional script files
:reload repeat last load command
:edit filename edit file
:edit edit last module
expr evaluate expression
:type expr print type of expression
:? display full list of commands
:browse list all names currently in scope
:cd dir change directory
:set +t display type of every evaluated expression
:unset +t don’t display type of every evaluated expression
:set +s display time & memory used in expression evaluations
:unset +s don’t display time & memory used in expression evaluations
:quit exit GHCi interpreter

33

