Engineering Science Mathematics Revision

August 2019

Prof DW Murray

Preamble

Throughout your time as an engineering student at Oxford you will receive lectures and tuition in the range of applied mathematical tools that today's professional engineer needs at her or his fingertips. The "1P1 series" of lectures starts in the first term with courses in Calculus, Linear and Complex Algebra, and Differential Equations. Many of the topics will be familiar, others less so, but inevitably the pace of teaching and its style involving lectures and tutorials, will be wholly new to you.

To ease your transition, this introductory sheet provides a number of revision exercises related to these courses. Some questions may require you to read around. Although a few texts are mentioned on the next page, the material will be found in Further Maths A-level textbooks, so do not rush immediately to buy.

This sheet has not been designed to be completed in an evening, nor are all the questions easy. Including revision, and proper laying out of your solutions, the sheet probably represents up to a week's work. We suggest that you start the sheet at least three weeks before you come up so that your revision has time to sink in. The questions and answers should be still fresh in your mind by 1st week of term, when your college tutors are likely to review your work.

B Do remember to bring your solutions to Oxford with you.

What does "proper" laying out of your solutions mean? If the solution is non-trivial it means not merely slapping down the answer, but showing and briefly explaining the logical progression behind your solution. It is often useful too to sketch and label a diagram as part of your solution.

Reading

The ability to learn new material yourself is an important skill which you must acquire. But, like all books, mathematics for engineering texts are personal things. Some like the bald equations, others like to be given plenty of physical insight. However, three useful texts are:

Title:	Advanced Engineering Mathematics
Author:	E. Kreyszig
Publisher:	John Wiley & Sons
Edition:	10th ed. (2011)
ISBN:	9780470646137 (Paperback c.£60 new)
Title:	Advanced Engineering Mathematics
Author:	K. Stroud (with D. J. Booth)
Publisher:	Palgrave Macmillan
Edition:	7th ed. (2013)
ISBN:	978-1-137-03120-4 (Paperback c.£45 new)
Title:	Mathematical Methods for Science Students
Author:	G Stephenson
Publisher:	Longman
Edition:	2nd ed. (1973)
ISBN/ISSN:	0582444160 (Paperback c. \pounds 53 new – ouch!)

Kreyszig's book is quite comprehensive and will be useful throughout your course and beyond. Stroud's text covers material for the 1st year and is well reviewed by students. Stephenson's book again covers 1st year material, but is divorced from engineering applications. It is packed with examples, but it is a bit dull.

As mentioned earlier, don't rush to buy these. But if you want to, think paperback and second-hand rather than new, and please shop around. In particular, avoid new copies of Stephenson: this old warhorse seems overpriced.

1. Differentiation

Solutions You should be able to differentiate simple functions:

 1. $5x^2$ 3. $4e^x$

 2. $4\tan x$ 4. $\sqrt{1+x}$

use the chain rule to differentiate more complicated functions:

5. $6\cos(x^2)$ **6.** e^{3x^4}

know the rules for differentiation of products and quotients:

7. $x^2 \sin x$ **8.** $\frac{\tan x}{x}$

understand the physical meaning of the process of differentiation:

- **9.** The velocity of a particle is given by $20t^2 400e^{-t}$, where t is time. Determine its acceleration at time t = 2.
- **10.** Find the stationary points of the function $y = x^2 e^{-x}$, and determine whether each such point is a maximum or minimum.

2. Integration

In You should understand the difference between a definite and an indefinite integral, and be able to integrate simple functions by recognising them as derivatives of familiar functions:

11. $\int_{a}^{b} 3x^{2} dx$ **13.** $\int \sin x \cos^{5} x dx$ **14.** $\int \frac{x}{\sqrt{1-x^{2}}} dx$

be able to manipulate functions so that more complex functions become recognisable for integration: **15.** $\int_0^{2\pi} \sin^2 x \, dx$

16. $\int \tan x \, dx$

so change variables, e.g. using $x = \sin \theta$ or some other trigonometric expression, to integrate functions such as:

17.
$$\int \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x$$
 18. $\int \frac{1}{\sqrt{a^2-x^2}} \, \mathrm{d}x$

Is use integration by parts for certain more complicated functions:

19.
$$\int x \sin x \, dx$$

Image of a stand way and a stand of a stand of a stand of a stand of a standard of

- **20.** What is the area between the curve $y = 8x x^4$ and the *x*-axis for the section of the curve starting at the origin which lies above the *x*-axis?
- **21.** The velocity of a particle is $20t^2 400e^{-t}$, and the particle is at the origin at time t = 0. Determine how far it is from the origin at time t = 2.

3. Series

IS You should be able to sum arithmetic and geometric series:

22. Sum (using a formula, not by explicit addition!) the first ten numbers in the series

10.0, 11.1, 12.2, ...

- **23.** Sum the first ten terms of the series
 - $x, 2x^2, 4x^3, \ldots$

☞ understand what a binomial series is:

24. Find the first four terms in the expansion of $(a+2x)^n$, where *n* is an integer and n > 3.

4. Functions

I™ You should be familiar with the properties of standard functions, such polynomials, rational functions (where both numerator and denominator are polynomials), exponential functions, logarithmic functions, and trigonometric functions and their identities:

- **25.** i) For what value(s) of x is the function $f(x) = x/(x^2 1)$ undefined? Describe the behaviour of f as x approaches these values from above and below.
 - ii) Find the limits of f(x) and df/dx as $x \to +\infty$ and $x \to -\infty$.
 - iii) Does the function have stationary values? If so, find the values of x and f(x) at them.
 - iv) Now make a sketch of the function, labelling all salient features.
- **26.** Sketch $y = e^{-t}$ and $y = e^{-3t}$ versus time t for $0 \le t \le 3$. When a quantity varies as $e^{-t/\tau}$, τ is called the *time constant*. What are the time constants of your two plots? Add to your sketch two curves showing the variation of a quantity with (i) a very short time constant, (ii) a very long time constant.
- **27.** A quantity varies as $y = 100e^{-10t} + e^{-t/10}$. Which part controls the behaviour of y at short time scales (ie when t is just above zero), and which at long times-scales?
- **28.** A quantity y_1 varies with time t as $y_1 = 2\cos\omega t$. A second quantity y_2 varies as $y_2 = \cos(2\omega t + \frac{\pi}{4})$. Plot y_1 and y_2 versus ωt , for $-2\pi < \omega t < 2\pi$. What are the amplitudes and frequencies of y_1 and y_2 ?

The hyperbolic cosine is defined as $\cosh x = \frac{1}{2}(e^x + e^{-x})$, and the hyperbolic sine is defined as $\sinh x = \frac{1}{2}(e^x - e^{-x})$. Other hyperbolic functions are defined by analogy with trigonometric functions: eg, the hyperbolic tangent is $\tanh x = \sinh x / \cosh x$.

- **29.** Show that (i) $\cosh^2 x - \sinh^2 x = 1$; (ii) $(1 - \tanh^2 x) \sinh 2x = 2 \tanh x$.
- **30.** Find $\frac{d}{dx} \cosh x$ and $\frac{d}{dx} \sinh x$. Express your results as hyperbolic functions.

5. Complex Algebra

You should find this topic in most A-level texts. We will use the notation that a complex number z = (x + iy), where x and y are the **Real** and **Imaginary** parts of z, respectively. That is, x = Re(z) and y = Im(z). The **Imaginary unit** i is such that $i^2 = -1$. Complex numbers can be represented as points on an Argand diagram. The modulus or magnitude of the complex number is r, where $r^2 = x^2 + y^2$, and the argument is θ . Obviously $x = r \cos \theta$, and $y = r \sin \theta$.

- **31.** Evaluate (i) (1 + 2i) + (2 + 3i); (ii) (1 + 2i)(2 + 3i); (iii) $(1 + 2i)^3$ and plot the resulting complex numbers on an Argand diagram. Determine the arguments of (1 + 2i) and $(1 + 2i)^3$.
- **32.** If z = (x + iy), its **complex conjugate** is defined as $\overline{z} = (x iy)$. Show that $z\overline{z} = (x^2 + y^2)$.
- **33.** By multiplying top and bottom of the complex fraction by the complex conjugate of (3 + 4i), evaluate $\frac{1 + 2i}{3 + 4i}$.
- **34.** Using the usual quadratic formula, find the two complex roots of $z^2 + 2z + 2 = 0$. (Hint: as $i^2 = -1$ we have that $\sqrt{-1} = \pm i$.) Are complex solutions to a quadratic equation always conjugates?
- **35.** Using standard trigonometrical identities, show that

$$(\cos \theta + i \sin \theta)^2 = (\cos 2\theta + i \sin 2\theta).$$

(More generally, $(\cos \theta + i \sin \theta)^{\alpha} = (\cos \alpha \theta + i \sin \alpha \theta)$ for any α .)

6. Vectors

Below, vectors are written in bold, unit vectors in the (x, y, z) directions are $(\mathbf{i}, \mathbf{j}, \mathbf{k})$, and a vector from point A to point B may be written \overrightarrow{AB} .

IS You should be familiar with the vector algebra of points, lines and planes, and with the scalar product.

36. Find the **unit** vector $\hat{\mathbf{v}}$ in the direction $\mathbf{i} - \mathbf{j} + 2\mathbf{k}$.

- **37.** Find the coordinates of point *P* if $|\overrightarrow{OP}| = 3$ and vector \overrightarrow{OP} is in the direction of (i) $\mathbf{i} + \mathbf{j} + \mathbf{k}$, (ii) $\mathbf{i} 2\mathbf{j} + 3\mathbf{k}$. (*O* is the origin.)
- **38.** Write down the vector equation of the straight lines (i) parallel to $\mathbf{i} + \mathbf{j} + \mathbf{k}$ and through the origin, (ii) parallel to $\mathbf{i} 2\mathbf{j} + \mathbf{k}$ and through the point (1,1,1).
- **39.** Find the point on the line $\mathbf{i} + \mathbf{j} + \mathbf{k}$ that is nearest to the point (3, 4, 5).
- **40.** Determine the angle between the vectors $(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ and $(3\mathbf{i} + 2\mathbf{j} + \mathbf{k})$.
- **41.** Find the vector position of a point 1/3 of the way along the line between (x_1, y_1, z_1) and (x_2, y_2, z_2) , and nearer (x_1, y_1, z_1) .
- **42.** At time t = 0 two forces $\mathbf{f}_1 = (\mathbf{i}+\mathbf{j})$ and $\mathbf{f}_2 = (2\mathbf{i}-2\mathbf{j})$ start to act on a point body of unit mass which lies stationary at point (1, 2) of the *x*, *y* plane. Determine the subsequent trajectory $\mathbf{r}(t)$ of the particle. At t = 2 the **i** components of both forces vanish. What is the trajectory for t > 2?

Bare answers and hints

1. 10*x* **16.** $-\ln(\cos x) + C$, where ln denotes \log_{e} 17. $\sin^{-1} x + C$ **2.** $4 \sec^2 x$ **18.** $\sin^{-1}(x/a) + C$ **3.** 4e^x **19.** $-x \cos x + \sin x + C$ **4.** $1/(2\sqrt{1+x})$ **20.** 9.6 **5.** $-12x\sin(x^2)$ **21.** $(160/3) + (400/e^2) - 400 \approx -292.5$ 6. $12x^3e^{3x^4}$ **22.** 149.5 7. $x^2 \cos x + 2x \sin x$ **23.** $\frac{x(1-1024x^{10})}{1-2x}$ 8. $(x \sec^2 x - \tan x)/x^2$ **24.** $a^n + 2na^{n-1}x + 2n(n-1)a^{n-2}x^2 + \frac{4}{3}n(n-1)a^{n-2}x^2 + \frac{4}{3}n(n-1)a^{n-2}x^2$ **9.** $80 + 400/e^2 \approx 134.1$ $1)(n-2)a^{n-3}x^3 + \dots$ **10.** Min at (0, 0), Max at (2, 4e⁻²) **25.** (i) $f(x) = x/(x^2 - 1)$ undefined at $x = \pm 1$. Asymptotic behaviour at $x = \pm 1$. (ii) As 11. $b^3 - a^3$ $x \to +\infty$, $f(x) \to 0$ from above. As $x \to -\infty$, $f(x) \to 0$ from below. Gradients 12. $x^{5}/5 + x^{4}/4 + C$ both tend to zero. (iii) $df/dx = -(x^2 + 1)/(x^2 - 1)^2$ is nowhere **13.** $-\frac{1}{6}\cos^6 x + C$ zero, hence no turning points. **14.** $-\sqrt{1-x^2} + C$ **26.** $y = e^{-t}$ and $y = e^{-3t}$: time constants 1 and 1/3 respectively. **15.** *π*

- 27. $100e^{-10t}$ dominates at small *t*. Note cross over when $100e^{-10t} = e^{-t/10}$ or $e^{-9.9t} = 0.01$, ie at t = 0.46.
- **28.** Amplitude 2, frequency $f = \omega/2\pi$; Amplitude 1, frequency $f = \omega/\pi$.

† Please see the suggestion at the bottom of the page.

29. (i) $\cosh^2 x = (e^{2x} + e^{-2x} + 2)/4$; $\sinh^2 x = (e^{2x} + e^{-2x} - 2)/4$; $\cosh^2 - \sinh^2 = 4/4 = 1$.

> (ii) $1 - \tanh^2 = 1/\cosh^2$; $\sinh 2x = 2\cosh x \sinh x$; Hence $(1 - \tanh^2 x) \sinh 2x =$ $2\cosh x \sinh x/\cosh^2 x = 2\tanh x$.

- **30.** $\frac{d}{dx}(e^{x} + e^{-x})/2 = (e^{x} e^{-x})/2.$ Hence $\frac{d}{dx}\cosh x = \sinh x \text{ and similarly}$ $\frac{d}{dx}\sinh x = \cosh x.$
- **31.** (i) (3+5i); (ii) (-4+7i); (iii) (-11-2i);
- **32.** Note $\sqrt{x^2 + y^2}$ is the *modulus* of z (and of \overline{z} too for that matter).
- **33.** (11/25) + i(2/25)
- **34.** Solutions are $(-1 \pm i)$. Yes: for a complex soln. The usual formula gives roots as

 $(-b\pm\sqrt{b^2-4ac})/2a.$

For complex roots, $b^2 - 4ac < 0$, giving the imaginary part and \pm signs always gives conjugate pairs with the same real part. Note though if $b^2 - 4ac > 0$ the two real solutions are different.

35. (i) Square to find $(\cos^2\theta - \sin^2\theta + 2i\sin\theta\cos\theta)$, hence result.

- **36.** $\hat{\mathbf{v}} = \frac{1}{\sqrt{6}} (\mathbf{i} \mathbf{j} + 2\mathbf{k}).$ **37.** (i) $(\sqrt{3}, \sqrt{3}, \sqrt{3})$, (ii) $\frac{3}{\sqrt{14}} (1, -2, 3).$
- **38.** (i) $\mathbf{r} = \frac{\alpha}{\sqrt{3}}(\mathbf{i} + \mathbf{j} + \mathbf{k})$, where parameter α is any real number. (NB: strictly no need for the $\sqrt{3}$, but using it makes α a measure of distance).

(ii)

$$\mathbf{r} = \left(1 + \frac{\alpha}{\sqrt{6}}\right)\mathbf{i} + \left(1 - \frac{2\alpha}{\sqrt{6}}\right)\mathbf{j} + \left(1 + \frac{\alpha}{\sqrt{6}}\right)\mathbf{k}$$

(Again no real need for $\sqrt{6}$, but ...)

- **39.** Vector from point to a general point on line is $(\frac{\alpha}{\sqrt{3}} - 3)\mathbf{i} + (\frac{\alpha}{\sqrt{3}} - 4)\mathbf{j} + (\frac{\alpha}{\sqrt{3}} - 5)\mathbf{k}$. We want α corresponding to minimum distance, or minimum squared-distance. Squared distance is $d^2 = (\frac{\alpha}{\sqrt{3}} - 3)^2 + (\frac{\alpha}{\sqrt{3}} - 4)^2 + (\frac{\alpha}{\sqrt{3}} - 5)^2$.. Diff wrt α and set to zero, cancelling factor of $2/\sqrt{3}$, gives $(\frac{\alpha}{\sqrt{3}} - 3) + (\frac{\alpha}{\sqrt{3}} - 4) + \frac{\alpha}{\sqrt{3}} - 5) = 0$, so that $\alpha = 4\sqrt{3}$. Thus the closest point is (4, 4, 4).
- **40.** Take the scalar product of **UNIT** vectors! $\cos^{-1}(10/14) = 44.41^{\circ}$.
- **41.** $(x_1, y_1, z_1) + \frac{1}{3} [(x_2, y_2, z_2) (x_1, y_1, z_1)] = \frac{1}{3} [(2x_1 + x_2), (2y_1 + y_2), (2z_1 + z_2)].$
- 42. Total force is $(3\mathbf{i} \mathbf{j})$ so for unit mass, $\ddot{x} = 3$; $\ddot{y} = -1$. Thus $\dot{x} = 3t + a$; $\dot{y} = -t + b$ where a = b = 0, as stationary at t = 0. Hence $x = 3t^2/2 + c$ and $y = -t^2/2 + d$, where, using initial position, c = 1 and d = 2. We find $\mathbf{r}(t) = (3t^2/2 + 1)\mathbf{i} + (-t^2/2 + 2)\mathbf{j}$. It's over to you for t > 2 ...
- \dagger To check your plot you could visit www.wolframalpha.com and type this into the box

plot y=2cos(x) and y=cos(2x+pi/4) for -2pi<x<2pi

1P2R (Electricity)
MT 2019

Electricity

Instructions

Do as much as you can **before** you come up to Oxford. Most of the questions are based on material that you should have covered in A level physics. All the topics will be covered in the initial lectures (and tutorials) at Oxford but you should consult books if you are stuck. The recommended text is "Electrical and Electronic Technology" by Hughes *et al* published by Pearson Higher Education/Longman, but many of the basic ideas can also be found in some A level texts. Some numerical answers are given at the end.

Basic concepts

1. Current as a flow of charge (Hughes 2.4 Movement of electrons)

A metal wire 1m long and 1.2 mm diameter carries a current of 10 A. There are 10^{29} free electrons per m³ of the material, and the electron charge is 1.6×10^{-19} C. On average, how long does it take an electron to travel the whole length of the wire?

2. Resistance and resistivity (*Hughes 3.5 and 3.6: Power and energy, Resistivity*)

An electromagnet has a coil of wire with 1400 turns, in 14 layers. The inside layer has a diameter of 72 mm and the outside layer has a diameter of 114 mm. The wire has a diameter of 1.6 mm and the resistivity of warm copper may be taken as 18 n Ω m.

- i) What is the approximate resistance of the coil?
- ii) What is the approximate power dissipated as heat if the coil carries a current of 6 A?

[Hint: average turn length = π x average diameter]

3. A laminated conductor is made by depositing, alternately, layers of silver 10 nm thick and layers of tin 20 nm thick. The composite material, considered on a larger scale, may be considered a homogeneous but anisotropic material with electrical resistivity ρ_{\perp} for currents perpendicular to the planes of the layers, and a different resistivity, ρ_p for currents parallel to that plane. Given that the resistivity of tin is 7.2 times that of silver find the ratio of the resistivities, ρ_{\perp}/ρ_n .

Engineering models

To analyse real physical systems, engineers have to describe their components in simple terms. In circuit analysis the description usually relates voltage and current – for example through the concept of resistance and Ohm's law. Often an engineer has to make assumptions to simplify the analysis, and must ensure that these assumptions are justified.

4. The ideal conductor

What are the properties of 'ideal' conductors used in circuit diagrams and how do they differ from real conductors?

5. The conductor in a circuit

A thin copper wire of radius 0.5 mm and total length 1 m, is used to connect a 12 V car battery to a 10 W bulb.

- i) Estimate the resistances of the wire and the bulb.
- ii) What would be a suitable model for the wire?
- iii) What assumptions have you made? (Think about the battery, the wire and the bulb.)
- iv) There is now a fault in the bulb, and it acts a short circuit. What model of the wire is now appropriate?
- v) Do you now need to change any of your assumptions?

Circuit analysis

One of the fundamental techniques in electricity is circuit analysis. The algebra is usually easier if you work either with currents as unknowns or voltages. These are basically restatements of Ohm's Law.

- 6. The idea of resistance can be extended to describe several components together.
 - Find the resistance, *R_{AB}*, between A and B in the circuit below.
 (Hint: re-draw the circuit combining the series and parallel components. You need not do this in one step.)

ii) Find the current, *I*, in the circuit below

iii) If an infinite number of resistors, not necessarily having the same value, are connected in series to what limit does the overall resistance of the combination tend? What is the limit if the resistors are now connected in parallel? 7. For the circuit shown, choose R_1 and R_2 so that the voltage v is 10 V when the device A takes zero current, but falls to 8 V when *i* rises to 1 mA.

Circuit models

8. The battery

A battery generates voltage through an electrochemical process; the voltage drops a little as the battery supplies more current. You have met the idea of modelling the battery by an ideal voltage source, V_b and resistance R_b (see the figure below, in which the battery **terminals** are at XX'). If the voltage with no current is 9 V but the terminal voltage drops to 8.8 V when a current of 1A is drawn from it, find the values of V_b and R_b .

9. A general voltage source

This model can be extended to any voltage source. For example in the laboratory you will use voltage generators which supply, say, a sine wave. Inside these are a number of circuit components. However as far as the outside world is concerned they can be modelled in exactly the same way: as a voltage, V_s and a resistance. The resistance is often called the source resistance, R_s or the output resistance, R_{out} . An example is shown in the figure below.

- i) If $V_s = 5V$ what is the voltage at XX' in the circuit as shown? This is called the *open circuit* voltage since there is an open circuit across the terminals.
- ii) What is the voltage across the terminals XX' if R_s is 10 Ω and a resistance of 100 Ω is connected across them?
- iii) In another source generating the same voltage a resistance of 100 Ω across XX' results in a terminal voltage of 4.9V. What is R_s?

Capacitors and Inductors

10. What is the apparent capacitance between A and B?

- 11. Write down the definitions of resistance, capacitance and inductance in terms voltage, charge and current.
 - i) If an a.c. voltage of $V_0 \sin(\omega t)$ is applied to each of the components, write down an expression for the *current* in each case. (Hint: Remember current is the rate of change of charge. You may need to look up the behaviour of an inductor.)
 - ii) Remember that power in an electrical circuit is the product of voltage and current. In an a.c. circuit both voltage and current are varying with time (as in the calculation you have just done for the resistor, capacitor and inductor) so the power must also be varying with time. Write down an expression for the power for each of the three cases.
 - iii) Now work out the average power in each case.

Some answers

- 1. About half an hour
- 2. $3.66 \Omega 132 W$
- 3. 2.19
- 5. 0.023 Ω, 14.4 Ω
- 6. 4 Ω
- 7. $R_1 = 3 k\Omega, R_2 = 6 k\Omega$
- 8. 9 V, 0.2 Ω
- 9. 5 V, 4.54 V, 2.04 V
- 10. 0.953 μF
- 11. ii) $V_0^2 [1 \cos(2\omega t)]/R$, $\omega C V_0^2 \sin(2\omega t)$, $-(V_0^2/\omega L) \sin(2\omega t)$ iii) $V_0^2/2R$, 0, 0

Part A Statics and Dynamics

Introduction

The questions in this short introductory examples sheet deal with material which is mainly covered in A Level Physics or Mathematics. They are intended to help you make the transition between school work and the Engineering Science course at Oxford. You should attempt these questions before you come to Oxford and be prepared to discuss any difficulties with your tutor when you first meet with them. The P3 Statics lectures, which will take place at the beginning of your first term, will build on the topics covered in the first group of problems. Although the P3 Dynamics lectures will not take place until later in the academic year, it is still essential for you to attempt the second group of problems at this stage.

For the acceleration due to gravity use $g = 10 \text{ m/s}_2$.

1. An aeroplane with four jet engines, each producing 90 kN of forward thrust, is in a steady, level cruise when engine 3 suddenly fails. The relevant dimensions are shown in Figure 1. Determine the resultant of the three remaining thrust forces, and its line of action.

Figure 1

2. The foot of a uniform ladder rests on rough horizontal ground while the top rests against a smooth vertical wall. The mass of the ladder is 40 kg. A person of mass 80 kg stands on the ladder one quarter of its length from the bottom. If the inclination of the ladder is 60° to the horizontal, calculate:

a) the reactions at the wall and the ground;

b) the minimum value of the coefficient of friction between the ground and the ladder to prevent the ladder slipping.

3. Figure 2 shows a tower crane. The counterweight of 1500 kg is centred 6 m from the centreline of the tower. The distance *x* of the payload from the centreline of the tower can vary from 4 to 18 m.

- a) Calculate the moment reaction at the base of the tower with:
- no payload
- payload of 1000 kg at x = 4 m
- payload of 1000 kg at *x* = 18 m
- b) Show that the effect of the counterweight is to reduce the

magnitude of the maximum moment reaction by a factor of 2.

c) Explain why changing the size of the counterweight would be

detrimental.

Figure 2

4. a) Figure 3 shows Galileo's illustration of a cantilever (i.e. a beam that is rigidly fixed at one end and unsupported at the other). If the beam is 2 m long and has mass per unit length of 7.5 kg/m, and the rock E has mass 50 kg, calculate the vertical reaction and the moment reaction at the wall.
b) A second cantilever tapers so that its mass per unit length varies linearly from 10 to 5 kg/m from the left hand to right hand ends, and it does not carry a rock at its free end. Calculate the vertical and moment reactions at the wall.

Figure 3

5. Figure 4 shows a plan view of a circular table of radius 400 mm and weight 400 N supported symmetrically by three vertical legs at points A, B and C located at the corners of an equilateral triangle of side 500 mm. An object weighing 230 N is placed at a point D on the bisector of angle ABC and a distance *x* from AC. Assume that the reactions at A, B and C are vertical.

Figure 4

a) Find the value of *x* and the values of the reactions at which the table starts to tip.

b) Explain why the table cannot tip if the object weighs 220 N.

6. Blocks A and B have mass 200 kg and 100 kg respectively and rest on a plane inclined at 30° as shown in Figure 5. The blocks are attached by cords to a bar which is pinned at its base and held perpendicular to the plane by a force *P* acting parallel to the plane. Assume that all surfaces are smooth and that the cords are parallel to the plane.

a) Draw a diagram of the bar showing all the forces acting on it.

b) Calculate the value of *P*.

7. Figure 6 shows a uniform bar of weight W suspended from three wires. An additional load of 2W is applied to the bar at the point shown.

a) Draw a diagram of the bar showing all the forces acting on it.

b) Write down any relevant equilibrium equations and explain why it is not possible to calculate the tensions in the wires without further information.

c) In one such structure it is found that the centre wire has zero tension. Calculate the tensions in the other two wires.

d) In a second such structure assume that the wires are extensible and the bar is rigid. Write down an expression for the extension of the middle wire in terms of the extensions of the two outside wires. Assuming the tensions in the wires are proportional to the extensions, calculate the tensions for this case.

Figure 6

8. The three bars in Figure 7 each have a weight *W*. They are pinned together at the corners to form an equilateral triangle and suspended from A.

a) Draw a diagram of each bar separately, showing all the forces acting on each bar.

b) Calculate the compressive force in bar BC.

Dynamics Problems

9. A body with initial velocity *u* has constant acceleration *a*. Starting from the definition that velocity is the rate of change of displacement, and acceleration is the rate of change of velocity, show that:

a) v = u + at

b)
$$v^2 = u^2 + 2as$$

c) $s = ut + \frac{1}{2}at^2$

d) A stone takes 4 s to fall to the bottom of a well. How deep is the well?What is the final velocity of the stone? What problems would you encounter in this calculation if the stone took 50 s to reach the bottom?e) How do the equations in a), b) and c) change if the acceleration is not constant?

10. A car engine produces power of 20 kW. If all of this power can be transferred to the wheels and the car has a mass of 800 kg, calculate:

- a) the speed which the car can reach from rest in 7 s;
- b) the acceleration at time 7 s.

Is it reasonable to assume the power is constant? How does the gearbox in the car help to make this a more reasonable assumption?

11. A stone of mass *m* is tied on the end of a piece of string. A child swings the stone around so that it travels in a horizontal circle of radius *r* at constant angular velocity ω rad/s. Write down expressions for:

a) the speed of the stone;

c) the acceleration of the stone, specifying its direction;

d) the kinetic energy of the stone;

e) the tension in the string and the angle it makes with the horizontal if the gravitational acceleration is *g*.

12. a) A bicycle wheel has radius *R* and mass *m*, all of which is concentrated in the rim. The spindle is fixed and the wheel rotates with angular velocity ω . Calculate the total kinetic energy of the wheel. How does the kinetic energy differ from this if the wheel is rolling along with angular velocity ω , rather than spinning about a fixed axis?

b) In contrast to part a), a disc of mass *m*, radius *R* and angular velocity ω has its mass uniformly distributed over its area. Calculate the total kinetic energy of the disc as follows:

i) Write down the mass of the disc contained between radius r and radius r + dr.

ii) Write down the speed of this mass.

iii) Calculate the kinetic energy of this mass.

iv) Calculate the total kinetic energy of the whole disc by integrating the previous result with respect to *r* between the limits r = 0 and r = R

S.Acikgoz

Answers

1. 270 kN, 4 m from centreline

2. a)
$$H_{wall} = 400 / \sqrt{3} \text{ N}$$
, $H_{ground} = 400 / \sqrt{3} \text{ N}$, $V_{ground} = 1200 \text{ N}$
b) $\mu \ge 1/(3\sqrt{3})$

- **3.** a) *M* = -90, -50, +90 kNm (+ve = anti-clockwise)
- **4.** a) 650 N, 1150 Nm
 - b) 150 N, 133.3 Nm
- **5.** a) $R_A = R_C = 315 \text{ N}, R_B = 0 \text{ N}, x = 251 \text{ mm}$
- 6. b) $P = 500 \,\mathrm{N}$
- **7.** c) *W*, 2*W*
 - d) W/2, W, 3W/2
- 8. b) $W/\sqrt{3}$
- 9. d) 80 m, 40 m/s
- 10. a) 18.7 m/s
 - b) 1.34 m/s²
- **11.** a) *rω*
 - b) $2\pi/\omega$,
 - c) $r\omega^2$
 - d) $\frac{1}{2}mr^2\omega^2$
 - e) $\theta = \tan^{-1}(g / r\omega^2)$, $T = m\sqrt{g^2 + r^2\omega^4}$
- **12.** a) $\frac{1}{2}mR^2\omega^2$, or $mR^2\omega^2$ if rolling
 - b) $\frac{1}{4}mR^2\omega^2$

Introduction to Computing

Computing is a central part of a professional engineer's working life. Throughout the course you will come across professional engineering software packages for Computer Aided Design, Computational Fluid Dynamics and many other applications. A common software packaged, used by many engineers in industry and academia, is MATLAB. At its most fundamental level, it is like a programmable scientific calculator, but with the file and memory resources of a computer at its disposal. The aspect that sets MATLAB apart from other software packages is its ability to efficiently carry out computations on large vectors and matrices. This is useful for swift mathematical analysis of physical systems that can be modelled using a system of equations represented as a matrix.

MATLAB also contains its own programming language. This is important as there are many occasions when the software you need does not exist, so you will need to be able to program your own. Throughout your studies you will use MATLAB many times, for example to simulate rocket launches, analyse data from vibrating buildings and help you design a bridge.

The next pages introduce MATLAB and basic concepts in programming. We do not expect any prior knowledge on this topic, but we do expect you to spend time outside of the computing laboratory practicing. Learning MATLAB is like learning a foreign language, practice often for success. MATLAB can be a great aide in checking answers on tutorial sheets. If you already have experience of coding, let these exercises be a refresher for you, and an introduction to MATLAB specific syntax and functions which you will need to learn.

This introductory information ends with a short quiz you must attempt. We <u>encourage</u> you to access MATLAB to follow along with the content. However, if you do not have sufficient internet access, please do not worry. You can still complete the quiz without accessing the software.

Accessing MATLAB

There are computer laboratories in the Department where you will be taught how to use MATLAB and other software. The University has a MATLAB license so that you can also install the software on your own computer for free. This means you are able to use MATLAB outside of scheduled laboratory time - particularly useful for project work.

If you have access to your university e-mail address you can create a university linked MathWorks account by visiting: bit.ly/matlabportal¹ This will prompt you to use your University of Oxford single sign-on. You will then need to click through to Create a MathWorks account. You **must** use your university e-mail to sign up. **Find full instructions on the last page!** This will allow you to:

- Install MATLAB onto a personal computer
- Access MATLAB Online via matlab.mathworks.com A web-based version of MATLAB.
- Access MATLAB Academy via matlabacademy.mathworks.com A collection of online training courses.
- Access MATLAB Mobile via mathworks.com/products/matlab-mobile A portable version of MATLAB available on your phone or tablet. You can even acquire data from device sensors, like the accelerometer or GPS.

If you have your own computer but not your university e-mail yet:

You can download a free 30-day trial from uk.mathworks.com.

You can activate the license once you have access to your university e-mail.

Two versions of MATLAB are released each year 'a' version in March and 'b' in September. It does not matter which version you use.

¹If the short url does not work, try: https://uk.mathworks.com/academia/tah-portal/ university-of-oxford-30972477.html

🔺 MATLAB R20:	L6b - academic use			1000		10 C 10 C 10 C		
HOME	PLOTS	APPS				196 6 0	Search Docume	ntation 🔎 🛣
New New C Script	Dpen Compare	Import Save Data Workspace	New Variable Open Variable Clear Workspace ARIABLE	Analyze Code Run and Time CODE	Simulink Layo	Preferences Set Path Parallel ENVIRONMENT	Add-Ons Help	Community Community Request Support Learn MATLAB RESOURCES
< 🔶 🔁 🔊	🍌 🕨 C: 🕨 Users	▶ engs1643 ▶ Doe	uments > MATLAB > 1	P5 Computing Lab 🕨				- ₽
Current Folder Name ^ Foldof Stopac Stopac Stopac Stopac Stopac Stopac Stopac Stopac Stopac Stopac Stopac Name ^ Mane ^ Stopac Stopac Stopac Name ^ Stopac Name ^ Stopac Stopac Name ^ Stopac Stopac Name ^ Stopac Stopac Name ^ Stopac Stopac Name ^ Stopac Name ^ Stopac Name ^ Stopac Name ^ Stopac Name ^ Stopac Name ^ Stopac Name ^ Name ^ Stopac Name ^ Name ^ Stopac Name ^ Name ^ Stopac Name ^ Stopac Name ^ Stopac Name ^ Stopac Name ^ Stopac Name ^ Stopac Name ^ Stopac Stopac Name ^ Stopac	essionExercises.m ochoid.m ticeExercise.m 0End.m © Value 3	Command Wint >> 1+2 ans = 3 ft >>	low					
IIII.								

Figure 1: MATLAB Interface

Figure 1 shows the standard layout of MATLAB upon launch. Menus run across the top and various windows fill the rest of the screen. The three main windows are:

• the **Command Window** (outlined in red):

Anything that can be done in MATLAB can be achieved by typing into the Command Window. The dark green area shows where you can type, and the light green shows previous commands that have been executed.

• the Workspace (outlined in yellow):

Shows any information that is currently stored in MATLAB's memory. In the Figure the value '3' is currently stored as 'ans'.

 the Current Directory (outlined in pink): Shows MATLAB's working directory, that is what files it has access to, and what folder any files created by MATLAB will be saved in.

If you now have access to MATLAB try the examples on the next few pages by typing in the commands where ever you see a box and >>. If do not have access: do not worry, simply read the notes.

Arithmetic, Variables and Errors

At its most basic level, MATLAB is just like a calculator. Type in a mathematical expression, press enter and the answer is calculated and displayed:

>> 1+2	>> 2*6	>> 2/4	>> 7^2
ans =	ans =	ans =	ans =
3	12	0.5	49

Notice that we use * for multiplication, / for divide and \land for raising to the power. A **variable** is like a box in computer's memory, used to store something. For example, you can create a variable called x and store the number 7 in it:

>> x = 7

This is called an **assignment**. It assigns the value 7 to the variable x. It allocates space in memory to store a number, then it puts 7 into that space. In general an assignment consists of a variable name on the left, followed by an equal sign with an expression on the right: variable = expression. Typing 7 = x for example, will give an error as you cannot assign the value 'x' to the number 7. All the variables you have created will be stored in the **workspace**. Typing a variable name will display the value stored in it to screen. Typing whos will show all the variables you have stored.

The variable x can then be used in other **expressions**. The value of the expression is calculated and the result is stored into the variable. For example, by entering

>> $y = x^2 + 5 + x - 3$

variable y will be assigned a value of 81 in the workspace.

You can assign a new value to an existing variable, by repeating the assignment with a different number. The last command you type will always override an earlier assignment. For example typing y = 5 will override the y expression you assigned above.

>> y = 5

Notice 81 is no longer in the workspace as it has been overwritten.

MATLAB is case sensitive. This means x and X are different variables. Variable names are a single word but can contain underscores.

Computer programs have to be very clear and precise for the computer to understand what it is you want. They have their own computer language that is much stricter than written English. When you get an error message, it is very important that you read the error message and try to understand what it is telling you. For example, an error as MATLAB needs something next to brackets:

```
>> 3(1+2)
Error: Unbalanced or unexpected parenthesis or bracket.
```

The following will not produce an error:

>> 3*(1+2)

Error messages are common when programming - do not worry! Try to understand the message, it will help you solve the problem!

Built-in Functions

Just like a scientific calculator, there are **functions** that you can use in your calculations. We say functions are **called** and **act on** a value or variable that has been **passed** into it. As an example, we can use the square root function by typing the following into the command window:

>> x = 2 >> y = sqrt(32*x)

The steps the computer takes to evaluate the function call are:

- The expression in the brackets is evaluated: 32*x is 64
- The value of the expression is passed to the function input: sqrt(64)
- The function returns the square root of the input: sqrt(64) returns 8
- The output of the function is written into the variable y: y=8

The sqrt function does not know anything about the variable x, it only sees the value 64 as the input and it returns the value 8.

Some other examples of functions:

```
>> d = 4*sin(pi/2)
>> l = log(50*d) % Finds natural logarithm of 50*d
>> r = randi(100) % Generates a random integer between 1 and 100
```

Functions can take **multiple inputs** e.g. rem(a,b) finds the remainder of a/b.

>> rem(9,3) % Outputs 0 >> rem(9,4) % Outputs 1

A key feature of MATLAB is the ability to write your own functions. You will be taught how to do this in your first year.

Help Documentation

There are so many things that MATLAB is capable of doing that the software can seem overwhelming upon first use. Luckily there is lots of documentation to help you along the way. You can type help followed by a function name to find out more about it and search for terms in the documentation using doc:

```
help isprime
doc prime
```

Data Types

Variables come in different **data types**. Above we looked at some numbers, which are stored as *doubles* - a way of representing numbers. As well as numbers, we can declare a variable as a **string** of text:

```
myTitle = 'Fuel analysis for model rockets'
```

MATLAB is often used for plotting experimental results and comparing data with mathematical predictions. The string data type is useful for things such as adding titles and labels to figures. You will learn to plot in your first lab.

Booleans and Flow Control

Another data type is a **Boolean** also known as a **logical**. A variable that is a Boolean only has two possible values: 1 representing 'true' or 0 representing 'false'.

Example: A function isprime(x) returns logical 1 if x is prime, and logical 0 if x is not prime. Results from the prime checking function on two values:

```
>> isprime(7)
ans = logical
1
```

Logicals are also created when an expression with a **relational operator** is declared. Available operators are shown in the Table below:

Relational Operator	Notation	Relational Operator	Notation
Less than	<	Not equal to	~ =
Greater than	>	Equal to	==
Less than or equal to	<=	Greater than or equal to	>=

Example logicals:

>> 10>100	>> 4>=3	>> 4~=3	>> 1==2
ans = logical	ans = logical	ans = logical	ans = logical
0	1	1	0

Expressions can be assigned to a variable:

```
>> check1 = (4 < 3)
check1 = logical
0
```

The expression is false (4 is not less than 3), so a variable check1 is stored is the workspace with logical value 0.

As the final exercise in the Computing Lab, you will be simulating a rocket launch. Relational operators, as above, are invaluable when simulating real world scenarios. They are used to find things such as:

- landing time (i.e. when has the rocket height gone below zero)
- if there is still fuel left (i.e is the fuel greater than zero)

Flow Control gives us the ability to choose different outcomes based on what else is happening. Flowcharts are an intuitive way to understand flow control in an algorithm. Figure 2 shows how different outcomes occur in a program based on *if* x is prime.

Figure 2: Check if integer is prime

We use **IF-ELSE-END** statements to code flow control:

General Form: IF statement == true do something ELSE do something else

END

MATLAB Code for the algorithm in Figure 1:

```
x = randi(50)
if isprime(x) == 1
    disp('x is prime')
else
    disp('x is not prime')
end
```

Quiz

This quiz has been designed so that if you have not managed to access MAT-LAB, you should still be able to answer the questions using the information from the previous pages. However, you are encouraged to use MATLAB to help you check your answers if you do have access to it.

1. We assign the value 9.81 to ${\rm g},$ and 50 to ${\rm m}:$

```
g = 9.81
m = 50
```

What is the correct way to calculate m multiplied by g and assign it to a variable named force using MATLAB syntax?

```
A. force = mg
B. mg = force
C. force = m x g
D. force = m*g
```

2. What values are assigned to x and y after these statements have been executed in this order in the command line?

```
 >> x = 3  >> y = 5  >> x = y  >> y = x
```

3. Booleans are logical expressions which are true (1) or false (0). Identify the values of the logical expressions below:

Expression	Value of logical
4 == 3	
5 ~= 3	
4 >= 1	
3.2 <= 10.1	

4. Boolean algebra is the combination of logical expressions. This is useful for when we need to check multiple conditions, which we often need to do when programming.

The chart on the right shows how multiple logcial expressions are combined in a computer to create one logical. The **AND** operator in MAT-LAB is denoted &&, whereas **OR** is denoted ||.

```
(x < 10) and (x > 6)

\downarrow

True and (x > 6)

\downarrow

True and False

\downarrow

False

\downarrow

logical 0
```

Fill in the Boolean logic table below. You can always check your answers by setting up two statements in MATLAB.

Expression	Evaluates to
True AND True	
False AND False	
True AND False	
False AND True	
True OR True	
False OR False	
True OR False	
False OR True	

- What MATLAB code will give a logical 1 when a variable x is even? (Hint: Look back at the rem function and the == operator).
- 6. An algorithm is a finite sequence of precise instructions to solve a problem. They can be communicated in various ways, for example written English, pseudo code or flowcharts. Consider the flow chart shown in Figure 3. Do you notice anything unusual about it? Test some different numbers in the chart and see what messages are displayed.

Figure 3: Flowchart for number sizing

What message will be displayed if x is 9, 100, 500 or 20000?

- 7. Write an algorithm to check if a random integer x is odd or even. Write out a method as a series of steps, draw a flow-chart or use pseudo-code.
- 8. Using MATLAB, run each of the demos on the next page.(Remember, you can use MATLAB online if need be see Page 2).

Demos

It is highly likely that this is your first time using MATLAB. We have started with the <u>very</u> basics. Do not let this make you underestimate what MATLAB is capable of. In your first computing lab you will learn how to use MATLAB to plot and solve equations. The demos below show some graphical applications that are possible using MATLAB. Try the following demos:

Vibrating Membranes: Type vibes in the Command Window. This solves the wave equation for the vibrations of a membrane and plots the results. Creating models like this helps predict material behaviour. Change the speed by clicking 'Faster' or 'Slower'. Press 'done' to close.

Chaotic Systems: Now type lorenz. This demo animates the integration of 3 differential equations that define a chaotic system called the 'Lorenz Attractor'. You will see a point moving around in orbit about a point known as the 'strange attractor'. MATLAB is used to model how objects move in 3D.

Bending Truss: Now type truss. This demo shows 12 natural bending modes of a two-dimensional truss. This is a good example of using MATLAB to visualise results we have derived theoretically. You will be designing a bridge like this in your Mechanics Lab this year.

Figure 5: vibes demo

Figure 6: lorenz demo

Figure 7: truss demo

- 9. Now check your answers to the previous questions online at http://bit.ly/QuizCheck. Note that URL is case sensitive.
- 10. (Optional but recommended) For a more detailed introduction to MATLAB, including how to start plotting graphs, you can complete the 'Onramp' Course through MATLAB Academy. It allows you to learn MATLAB in your internet browser through interactive exercises, videos and notes. It is free so will work even without your University e-mail. You will find your first laboratory session much easier if you complete this:

https://uk.mathworks.com/learn/tutorials/matlab-onramp.html

About MATLAB Academy

Everyone at the University has access to MATLAB Academy, a collection of online training courses. They cover a wide range of topics and are beneficial for all levels of user. To access other courses click the links from the Oxford MATLAB Portal page bit.ly/matlabportal².

Examples of available courses include *Solving Ordinary Differential Equations with MATLAB* and *Deep Learning with MATLAB*.

11. (Optional) MATLAB can be very helpful when completing your problem sheets for tutorials. You can use MATLAB to check your answers or speed up large calculations. If you would like to learn how to use MATLAB to solve systems of linear equations, which will appear on your early problem sheets, complete the Introduction to Linear Algebra Course on MATLAB Academy.

 $^{^2 \}rm https://uk.mathworks.com/academia/tah-portal/university-of-oxford-30972477.html$

P5 Computing Course Resources

Canvas App

You will be timetabled for five computing sessions over your first year. The main place to get information ahead of each Laboratory is Canvas, Oxford's digital platform to support teaching and learning. Once you have your Single Sign On (SSO) you will be able to log in at canvas.ox.ac.uk to see your courses. The P5 section is where you will find the laboratories information. You will find it useful to install the Canvas app on your mobile, search your store (iOS, Android or Google) for 'Canvas Student'.

=	Edit	K Back Modules	Computing Laboratory
_		Welcome! Start Here	ITEMAS
courses	See all	Computing Laboratory	Course Material
:	÷	Drawing and Design	Pro-Course Material - 1PP4
P1 Mathematics	P2 Electronic and	Electrical Laboratory	Introduction to Computing.pdf
PT Mathematics Information Eng P2 Electronic and Inform	Mechanical Laboratory	Cover Sheet	
:		Thermodynamics Laboratory	MATLAB Quick Reference
2 Structures	D4 Eporeu	Workshop Practice	P5 Computing Notes
nd Mechanics	P4 Energy	Engineering in Practice	Extra Practice (with Solutions)
o di dotta co di di moorita			Session 1 Practice
			Session 2 Practice
5 Engineering Coursework 5 Engineering Coursew	MEng Engineering Sci MEng Engineering Science		Solutions
\checkmark			Session 1 Question Answers PDF
🕤 📰	Y D Notifications Inhov	Calendar To do Notifications Inbox	Deshbaard Calandar To to Notifications Int

Figure 8: Canvas App Interface

The main resource is the 'P5 Computing Notes' PDF. It contains examples to be worked through, and exercises that must be completed in the laboratory. You will receive a printed version of this document once you arrive at Oxford.

You are welcome to start reading the notes and completing the examples if you have access to MATLAB before the lab sessions, but you MUST NOT complete the End of Session Exercises outside of the laboratory.

In case you have difficulty logging onto Canvas, a separate course website has some of the course material:

```
www.eng.ox.ac.uk/~labejp/Courses/1P5/
```

University of Oxford MATLAB Installation

1. VISIT OXFORD MATLAB PORTAL

To install MATLAB onto your computer, go to the web page https://uk.mathworks.com/academia/tah-portal/university-of-oxford-30972477.html

The University of Oxford MATLAB Portal is a page on the MathWorks website that has been customized for Staff and Students at the University of Oxford. It is a one stop shop for Oxford users of MATLAB.

Click the blue Sign In to get started button.

Then use your University of Oxford single sign-on (SSO) username and password.

2. CREATE UNIVERSITY LINKED MATHWORKS ACCOUNT

	Log in
his service is acces ystem.	sed via the University of Oxford Single Sign
Please enter your Oxt button.	ford username and password then click the "Login"
Username	
	e.g. abcd0123
Password	
Login	
Having trouble loggi	ng in?

Then click on Create to make a MathWorks Account:

To register to use MATLAB, you need an Oxford University e-mail address such as <u>firstname.lastname@seh.ox.ac.uk</u>.

The three letter code will change based on your college.

Fill in the rest of the form. The system will send you an e-mail, with a link you must click to verify.

You can access your e-mail at <u>https://outlook.office.com/owa/</u>

Now you can access many resources: e.g. MATLAB Online, Mobile or Academy.

You can also download and install MATLAB for your personal computer. See the next page for details.

To finish creating y information:	our profile, provide the following
We recommend using a pase	word different from your university account.
Email Address	You will need to verify your email address
First Name	
Last Name	
User ID (Optional)	
Password	
Password Confirmation	
Country	Please select
Department	Please select

3. DOWNLOAD CHOOSEN MATLAB VERSION

After verification, you will be taken directly to the MATLAB download page. (Also accessible by "My Account" and the Download Icon:

Downloads			
Download R2017a		Download earlier release	
		R2016b	
		R2016a	
	₹ R 2017α	R2015b	
		R2015aSP1	
		R2015a ~	

Choose the most recent release (mac users see the table for guidance).

4. SELECT THE CORRECT INSTALLATION METHOD AND LICENSE

When you run the installer, you will be asked to select an **Installation Method**.

Select Log in with a MathWorks Account.

Later, you will be asked enter an **e-mail address** and **password**.

Use the e-mail address and password that you for your MathWorks account

When asked to **Select a license**, choose the license with the **Individual** Label.

Toolboxes: When asked to select the products, there are over 80 toolboxes available to install. If you are using a standard broadband network connection at home, it may take many hours to download all the toolboxes. To save time, select just MATLAB and the toolboxes you need. We suggest MATLAB, Symbolic Math Toolbox and Simulink. You can run the installer again later to add additional toolboxes.

Which MATLAB version for mac?

Use the table on the right to choose the correct MATLAB release for your operating system.

To find which version of OSX you are using. On the Mac, Click on the apple in the far top left.

MATLAB	Mac Operating System
2019a	High Sierra 10.13 & above
2018b	Sierra 10.12 & above
2018a	El Capitan 10.11 & above
2017a	Yosemite 10.10 & above

Select About this MAC

If you have any problems or queries, have a look at the MATLAB FAQ page:

http://users.ox.ac.uk/~engs1643/matlab-faq.html

To: New 1st Year Engineering Students

From: Chair of the Faculty of Engineering Science

Use of Calculators in Engineering Examinations

As specified in the University's **Examination Regulations**, in your Preliminary examinations you will be permitted to take into the examination room *one* calculator of the types listed below:

- CASIO fx-83 series (e.g. Casio FX83GT)
- CASIO fx-85 series (e.g. Casio FX85GT)
- SHARP EL-531 series (e.g. Sharp EL-531WB)

You are advised to buy a calculator of the type listed above in good time, and to familiarize yourself with its operation before your Preliminary examinations.

Please note that the restriction will apply to **examinations** only. For all of your laboratory, project and tutorial work, you are free to use any calculator you wish.

Department of Engineering Science 17 Parks Road, Oxford, OX1 3PJ Tel: +44 (0)1865 273 000 Email: reception@eng.ox.ac.uk Website: www.eng.ox.ac.uk

DEPARTMENT OF ENGINEERING SCIENCE

Application for computer resources on departmental facilities

Name Course College College Tutor

I accept that all software systems and software packages used by me are to be regarded as covered by software licence agreements, with which I agree to abide. Unless specifically stating otherwise this agreement will prohibit me from making copies of the software or transferring copies of the software to anyone else, other than for security purposes, or from using the software or any of its components as the basis of a commercial product or in any other way for commercial gain. I indemnify the Chancellor, Masters and Scholars of the University of Oxford, and the Oxford University Department of Engineering Science, for any liability resulting from my breach of any such software licence agreement.

I will not use personal data as defined by the Data Protection Act on computing facilities made available to me in respect of this application other than in the course of my work as per the University's registration. I accept that the Oxford University Department of Engineering Science reserves the right to examine material on, or connected to, any of their facilities when it becomes necessary for the proper conduct of those facilities or to meet legal requirements and to dispose of any material associated with this application for access to its resources upon termination or expiry of that authorisation.

I agree to abide by any code of conduct relating to the systems I use and the University policy on data protection and computer misuse -<u>http://www.admin.ox.ac.uk/statutes/regulations/196-052.shtml</u>

In particular, I will not (by any wilful or deliberate act) jeopardise or corrupt, or attempt to jeopardise or corrupt, the integrity of the computing equipment, its system programs or other stored information, nor act in any way which leads to, or could be expected to lead to, disruption of the approved work of other authorised users.

Signature

Date

FIRST YEARS: Please bring the completed form to your first computing practical.

THE QUEEN'S ANNIVERSARY PRIZES For Husser and Further Education 2015

DEPARTMENT OF ENGINEERING SCIENCE

UNDERGRADUATE INDUCTION DAY Friday 11th October 2019

Undergraduate induction will take place in the Engineering Science Department Thom Building on Friday 11th October 2019. You should aim to arrive at Lecture Room 1 on the 1st floor by 1.55pm. **The induction programme will start promptly at 2.00pm**.

The afternoon will consist of two parts:

Part I	Welcome and Introductions – LR1
2.00pm	Welcome to the Department of Engineering Science Professor Ronald Roy, Head of Department
2.20pm	Introduction to the Undergraduate Course Professor Stephen Payne, Associate Head (Teaching)
2.30pm	Welcome from the Student Administration Office Jo Valentine, Head of Student Administration
2.40pm	Introduction to Safety in the Department of Engineering Science <i>Mr Gary Douglas, Safety Officer</i>
2.50pm	Introduction to the Junior Consultative Committee (JCC) Charig Yang, JCC Student Chair

Part II

Registration with the Department

3.00pm – 3.30pm Collect course materials from the vestibule area outside LR1 and LR2.

Please make sure that you will bring the signed consent form with you.

PHOTOGRAPHIC CONSENT FORM

On occasions the Departmental photographers are required to take photographs and/or video for purposes of publication in departmental and university documents/websites and for use in events, for example exhibitions/open days. If you have no objections, please sign the agreement below.

I agree to be photographed/filmed. I also agree that such material may be kept in the Department's media resources library database and in the University Photographic Library, for use in Departmental/University publications, websites, lectures and events and may also be passed on to third parties for use in *bona fide* publications. I am over the age of 18.

Signed	Date
Name (in capitals)	
College	

If the student is under the age of 18 years, the following section must be completed.

I hereby certify that I am the parent/guardian of and on their behalf give my consent without reservation to the aforementioned.

Signature of parent or guardian		
Name (in capitals)		
Date	Address	

.....

Under the Data Protection Act 1998, your photograph constitutes personal data, and as such will be kept in accordance with the provisions of that Act. If you wish to object to the use of your data for any of the above purposes, please give details here.

FIRST YEARS: Please bring the completed form to the Department of Engineering Science Induction.

THE QUEEN'S ANNIVERSARY PRIZES For Hisser and Further Education 2015