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REVIEW ARTICLE

Storing and retrieving long-term memories: cooperation
and competition in synaptic dynamics
Anita Mehta

Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

ABSTRACT
We first review traditional approaches to memory storage
and formation, drawing on the literature of quantitative
neuroscience as well as statistical physics. These have gen-
erally focused on the fast dynamics of neurons; however,
there is now an increasing emphasis on the slow dynamics
of synapses, whose weight changes are held to be respon-
sible for memory storage. An important first step in this
direction was taken in the context of Fusi’s cascade model,
where complex synaptic architectures were invoked, in par-
ticular, to store long-term memories. No explicit synaptic
dynamics were, however, invoked in that work. These were
recently incorporated theoretically using the techniques
used in agent-based modelling, and subsequently, models
of competing and cooperating synapses were formulated. It
was found that the key to the storage of long-term mem-
ories lay in the competitive dynamics of synapses. In this
review, we focus on models of synaptic competition and
cooperation, and look at the outstanding challenges that
remain.
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1. Introduction

Memory [1,2] and its mechanisms have always attracted a great deal of
interest [3]. It is well known that memory is not a monolithic construct,
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and that memory subsystems corresponding to episodic, semantic or working
memory exist [4]. We focus here on explicit memory, which is the memory for
events and facts.

Models of memory have, themselves, long been studied in the field of
mathematical psychology: the article by Raaijmakers and Shiffrin [5] provides
a valuable review of models that existed well before the neural network models
with which most physicists are familiar, began to appear. Here, memory was
assumed to be distributed over a large set of nodes and an item was defined by
the pattern of activation over a set of nodes. This was propagated through a
network of links whose geometry and weights determined the output. Such
models of storage and retrieval are discussed at length in [5], but in the
interests of a historical presentation, we briefly describe the earliest example
known as the ‘brain state in a box’ model, or BSB [6]. In this model, items are
vectors while learning is represented by changes in synaptic strengths. For any
such pair of items, the synaptic strengths between the input and output layers
are modified in such a way that considerable storage and retrieval is possible,
even in the presence of noise. There have in parallel been a lot of suggestions
regarding the way in which working memory actually functions: from the
point of view of the current review, the most important distinction between
these is that forgetting involves temporal decay in the research of Baddeley
and co-workers [7,8] and that it does not, in the work of Nairne and co-
workers [9,10]. Although a detailed discussion of these psychological (and
somewhat empirical) models is beyond the scope of this review, they do
indeed offer fertile ground for mathematical modellers who would wish to
construct quantitative models of working memory.

In general, memories are acquired by the process of learning. Simply put,
patterns of neural activity change the strength of synaptic connections within
the brain, and the reactivation of these constitutes memory [11]. In this context,
we first review the different kinds of learning to which a network can be
subjected [12]. These are respectively: supervised, reinforcement, and unsuper-
vised learning. In supervised learning, the goal is to learn a mapping between
given input and output vectors, as, for instance, when we classify the identity of
items in a list. In reinforcement learning, the goal is to learn a mapping between
a set of inputs or actions in a particular environment and some measure of
reward. In unsupervised learning, the network is provided with no feedback at
all. Rather, synaptic strength changes occur according to a learning rule based
only on pre- and post-synaptic activity, with no reference to any desired output.
The pattern of synaptic strengths that results in this case depends on the nature
of the learning rule and the statistical structure of the inputs presented. It is this
kind of learning with which this review will be chiefly concerned.

The somewhat bland statement above, of memories being acquired by a
process of learning, actually pushes a lot of puzzles under the rug. Why is it
that some memories are quickly forgotten, while others last a lifetime? One
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hypothesis is that important memories are transferred, via their synaptic
strengths, to different parts of the brain that are less exposed to ambient
noise. In particular, during a process known as synaptic consolidation [13],1

memories that are first stored in the hippocampus are transferred to other
areas of the cortex [14,15]; this transfer can happen while the events are rerun
during sleep [16]. The case of the famous patient HM [17] whose hippocam-
pus was removed following epilepsy reinforces this hypothesis: HM retained
old memories from before his surgery, but he could barely acquire any new
long-term memories.

There is yet another mechanism for memory consolidation which happens at
the synaptic level, involving the mechanism of synaptic plasticity, whereby
synapses change their strength. Short-term plasticity occurs when the change
lasts up to a few minutes, while long-lasting increases/decreases of synaptic
strength are known respectively as long-term potentiation/depression (LTP/
LTD); LTP was first discovered experimentally by Bliss and Lomo [18] in 1973.
Long-term plasticity is further subdivided into early-long-term plasticity (e-LTP)
when synaptic changes last up to a few hours and late-long-term plasticity (l-
LTP), when they last from beyond typical experimental durations of 10 h to
possibly a lifetime. Such l-LTP also falls within the terminology of synaptic
consolidation [19]; here, relevant memories are consolidated within the synapses
concerned, so that new memories can no longer alter previously consolidated
ones. The two most important theoretical models of this second kind of synaptic
consolidation involve a process called synaptic tagging [19–21]. The hypothesis is
that a single, brief burst of high-frequency stimulation is enough to induce e-LTP,
and its expression does not require protein synthesis. On the other hand, l-LTP
can be induced by repeated bursts of high-frequency stimulation, which leads to
an increase in synaptic strength until saturation is reached. There is also a view
[21] that more stimulation does not increase the amount of synaptic weight
change at individual synapses, but rather increases the duration of weight
enhancement. In this case, it has been shown that protein synthesis is triggered
at the time of induction. Also, it was found that e-LTP at one synapse could be
converted to l-LTP if repeated bursts of high-frequency stimulation were given to
other inputs of the same neuron during a short period before or after the
induction of e-LTP at the first synapse [22]. This discovery led to the hypothesis
that such stimulation initiates the creation of a ‘synaptic tag’ at the stimulated
synapse, which is thought to be able to capture plasticity-related proteins. The
general framework for these heterosynaptic effects is called synaptic tagging and
capture, for the details of which the reader is referred to [19,21].

It should be mentioned here that because of the interdisciplinary nature of
the field, much of the discussion in the literature [23,24] involves terminology
such as ‘plasticity induction and maintenance’, to refer respectively to short-
term and long-term plasticity changes. Specifically, in [24], the author’s find-
ings reinforce the intuition that LTP induction and maintenance would lead
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respectively to short- and long-term memory. Thus in the following, models
manifesting short-term memory involve only plasticity induction, while plas-
ticity maintenance is responsible for the manifestation of long-term memory
in the models that form the core of this review.

Finally, some of the most recent developments in the modelling of memory
acquisition and maintenance involve the concept of engrams [25]; here,
memories may be reconstructed by single neuronal activation. The underlying
idea is that a big network of neurons is involved in memory acquisition, with
several connections being modified; these may be lost over time or in an
activity-dependent manner such that memory is virtually supported by a
single connection, and later reconstructed. This mechanism suggests that
memory reactivation may not rely on the same network involved in its
acquisition, but rather on the reconnection of neurons that may have similar
responses. The authors of [25] also suggest that memories at the time of
acquisition are already stored in the cortex, instead of being transferred
from the hippocampus to the cortex as suggested in [14,15].

To sum up, memory formation is a complicated phenomenon related to
neural activities, brain network structure, synaptic plasticity [26], and synaptic
consolidation [19].

We will provide an overview of some of the more traditional approaches,
involving neural networks – both those based on detailed biophysical princi-
ples and those that were explored by statistical physicists starting from the
seminal work of Hopfield [27]. Much of this has already been extensively
reviewed, so the focus of the present review comprises questions like: how can
short-term and long-term memory coexist in our brains? While it is known
that short-term memory is ubiquitous, what are the synaptic mechanisms
needed for long-term memory storage?

It is well known that too much plasticity causes the erasure of old mem-
ories, while too little plasticity does not allow for the quick storage of new
memories. This palimpsest paradox [28,29] has been at the heart of the
quandary faced by modellers of synaptic dynamics. While synaptic consolida-
tion does indeed provide some insights into this, neuroscientists [30,31] have
typically focused on synaptic plasticity [32], for which increasingly sophisti-
cated models have emerged over the years [33–35]. There are two broad
classes: biophysical models, which incorporate details at the molecular level,
and phenomenological models, which relate neuronal activity to synaptic
plasticity. It is the latter class of models that we will focus on in this review,
both because they are more amenable to statistical physical techniques and
because they account for higher-level phenomena like memory formation.
Such modelling, while it may not include details of specificities involving
chemical and biological processes in the brain, can outline possible mechan-
isms that take place in simplified structures. For example, the study of neural
networks [33–35], while it greatly simplifies biological structures in order to
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make them tractable, has still been able to make an impact on the parent field.
In particular, neural networks such as the Hopfield model [27,36] have been
extensively investigated via methods borrowed from the statistical physics of
disordered and complex systems [37–39]. In these models, memories are
stored as patterns of neural activities, which correspond both to low-energy
states and to attractors of the stochastic dynamics of the model.

What this class of phenomenological models lacks in biological detail, it
typically makes up for in minimalism. Abbott, one of the pioneers in this field,
summed up its virtues thus [40]:

Identifying the minimum set of features needed to account for a particular phenom-
enon and describing these accurately enough to do the job is a key component of
model building. Anything more than this minimum set makes the model harder to
understand and more difficult to evaluate. The term ‘realistic’ model is a sociological
rather than a scientific term. The truly realistic model is as impossible and useless a
concept as Borges’ map of the empire that was of the same scale as the empire and
that coincided with it point for point.

Within this class of models, there is yet another divide; there are models
which focus on the fast dynamics of neurons, and then those that focus on the
slow dynamics of synapses. We will review each one in turn. In particular, in
the second case, we will focus on the nature of synaptic dynamics, which
involve competition and cooperation [41]. There is abundant evidence that
correlation-based rules of synaptic cooperation, which lead to the outcome
‘neurons that fire together, wire together’, are followed in many organisms; the
latter is known as Hebb’s rule, due to the pioneering work of Hebb in
establishing it [42]. In synaptic cooperation therefore, synapses that work
together are rewarded by being strengthened. However, synapses also have a
competitive side: while some synapses grow stronger and prosper, others,
which left to themselves would also have strengthened, instead weaken. (An
example of this can be seen in the process of ocular dominance segregation
[43], where competitive correlations ensure that inputs to the left and right
eye, though they fire together, do not wire together). Of these two processes,
synaptic cooperation is by far the more commonly used in mathematical
modelling; however, its unbridled prevalence leads to instabilities, for which
synaptic competition provides a cure. From a more biological standpoint,
synaptic competition is a concept that has long found favour with the neu-
roscience community [31]; however, its use is relatively recent in the context
of statistical physics models. The present review accordingly emphasises those
approaches where synaptic cooperation and competition are key.

We begin this article with a review of the Hopfield model (Section 2), where
we describe the model as well as its use in storing and retrieving random
patterns. We then turn to phenomenological models of synaptic plasticity
(Section 3), which are further classified as rate-based models (Section 3.1) and
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spike-time-dependent plasticity (STDP) models (Section 3.2), where the synaptic
strength is always treated as a continuous variable. A change of key sets in Section
4, when synapses are discretised, with the further possibility (Section 4.1) of
occupying a multiplicity of states. In the following section (Section 5), we present
an extensive review of the neuroscience literature to do with the perceived need
for synaptic competition. These ideas are implemented in Section 6 where, in
particular, synaptic strengths are discretised and competitive dynamics
embedded, using tools from statistical physics. In the Discussion (Section 7),
we summarise the state of the literature and discuss some future challenges.

2. The Hopfield model

Appropriately for the readership of this journal, we start by reviewing the
Hopfield model, both because this is one of the seminal contributions of
physics to the field and also because it is the basis on which a large class of
models (STDP, cf. Section 3.2) is based.

In 1982, John Hopfield introduced an artificial neural network to store and
retrieve memory like the human brain [27,36]. In such a fully connected
network of N neurons, there is a connectivity (synaptic) weight Jij between
any two neurons i and j, which is symmetric so that Jij ¼ Jji, and Jii ¼ 0. Such
a network is initially trained to store a number of patterns or memories. It is
then able to recognise any of the learned patterns by exposure to only partial
or even some corrupted information about that pattern, that is, it eventually
settles down and returns the closest pattern or the best guess.

We present here a simple picture of memory storage and retrieval along the
lines of [44]. Each neuron is characterised by a variable S which takes the
value þ 1 if the neuron is firing and � 1 if the neuron is not firing. At time
t þ 1, the neuron labelled by the index i, where i ¼ 1; 2; 3; . . . ;N for a system
of N cells, fires or does not fire based on whether the total signal it is receiving
from other cells to which it is synaptically connected is positive or negative.
Thus, the basic dynamical rule is

Siðt þ 1Þ ¼ sgn
XN
j¼1

JijSjðtÞ
 !

; (1)

where Jij is a continuous variable representing the strength of the synapse
connecting cell j to cell i. The basis of a network associative memory is that
the above dynamics can map an initial state of firing and non-firing neurons,
Sið0Þ, to a fixed pattern, �i, which remains invariant under it. Various memory
patterns �

μ
i for μ ¼ 1; 2; 3; . . . ; P which do not change under the above

transformation act as fixed-point attractors; initial inputs Sið0Þ are mapped

to an associated memory pattern �
μ
i if the overlap

P�
i μSið0Þ=N is close

enough to one. How close this overlap must be to one, or equivalently how
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well the initial pattern must match the memory pattern in order to be mapped
to it and thus associated with it, is determined by the radius of the domain of
attraction of the fixed point. The issue of domains of attraction associated with
a fixed point has never been completely resolved. The sum of all synaptic
inputs at site i,

hμi ¼
XN
j¼1

Jij�
μ
j ; (2)

known as the local field, is the signal which tells cell i whether or not to fire
when Sj ¼ �

μ
j for all j�i. In order for a memory pattern to be a stable fixed

point of the dynamics, the local field must have the same sign as �
μ
i or

equivalently

hμi �
μ
i > 0 : (3)

We will call the quantities hμi �
μ
i the aligned local fields. It seems reasonable to

assume that the larger the aligned local fields are for a given μ value the
stronger the attraction of the corresponding fixed point �μi and so the larger its
domain of attraction. This reasoning is almost right, but it leaves out an
important feature of the above dynamics. Multiplying Jij by any constants
has absolutely no effect since the dynamics depends only on the sign and not

on the magnitude of the quantity
PJij Sj. Since the quantities hμi �

μ
i change

under this multiplication they alone cannot determine the size of the basin of
attraction. Instead, it has been found that quantities known as stability para-
meters and given by

γμi ¼
hμi �

μ
i

jJji
; (4)

where we define

jJji ¼ ð
XN
j¼1

J2ijÞ1=2; (5)

provide an important indicator of the size of the basin of attraction associated
with the fixed point �μi . Roughly speaking, the larger the values of the γμi , the
larger the domain of attraction of the associated memory pattern. In order to
construct an associative memory, one must find a matrix of synaptic strengths
Jij which satisfies the condition of stability of the memory fixed points and has

a specified distribution of values for the γμi giving the domain of attraction
which is desired.
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Notice that in the above, the synapses are used for storage and retrieval of
memories, as well as a way of updating the neuronal states; in other words,
they are not explicitly updated.

3. Phenomenological models of synaptic plasticity

We move on now to models where plasticity is invoked, that is, where
synapses are explicitly updated. The assumption here is that neuronal firing
rates are, in their turn, responsible for synaptic strengthening or weakening.
The basic principle at work is Hebb’s rule [42], which as mentioned above,
says that ‘cells that fire together, wire together’. Another way of viewing this
rule is to say that simultaneous events over a period of time suggest a causal
link, and many rate-based models of synaptic plasticity have been formulated
on this basis. However, and more recently, a great deal of attention has been
paid to a much stricter definition of causality via the field of STDP [45,46]:
here, synaptic strengthening only occurs if one of the neurons is systematically
active just before another one. In addition to realising the Hebbian condition
that a synapse should be strengthened only if it constitutes a causal link
between the firing of pre- and post-synaptic neurons, STDP also leads to the
weakening of synapses which connect neurons whose firings are temporally
correlated, but where the firing is not causally ordered.

We briefly review these two classes of models below.

3.1. Rate-based models

Here, the rate of pre- and post-synaptic activities measured over some time
period determines the sign and magnitude of synaptic plasticity. The activities
are modelled as continuous variables, corresponding to a suitable average of
neuronal firing rates. The rate of change of synaptic strength or weight Ji at
synapse i is modelled as a function of the presynaptic input xi at that synapse,
the postsynaptic output activity y, the weight itself, and, in the most general
case, the weights of other synapses:

dJi
dt

¼ f ðxi; y; Ji; JjÞ: (6)

Without the competition from other synapses Jj, synaptic weights could grow
uncontrollably. Before the explicit inclusion of synaptic competition, this
instability was combated in two ways; in Oja’s [47] model, Hebbian plasticity
was augmented with a decay term, so that weights equilibrated to the first
principal component of the input correlation matrix. Another way forward
was shown by the BCM model [48] which explicitly included both LTP and
LTD regions, with a sliding threshold separating them; when synaptic weights
became too large, the threshold shifted so that any further activation led to
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synaptic depression. Subsequently, indirect ways of including synaptic com-
petition (Section 5), such as the normalisation of the total synaptic weights,
were included in the modelling; more recently, there have been a number of
approaches where synaptic weights are discretised (Section 4) and competition
explicitly implemented (Section 6).

3.2. Models of STDP

STDP provides the answer to the following question: For neurons embedded
in a network which are bombarded with millions of inputs, which ones are
important? Which information should a given neuron ‘listen’ to and pass
along to downstream neurons? These are the formidable questions that the
vast majority of neurons in the brain have to solve during brain development
and learning. The crucial link is causality – if one of the cells is active
systematically just slightly before another, the firing of the first one might
have a causal link to the firing of the second one and this causal link could be
remembered by increasing the wiring of connections. Theoreticians in the
mid-1990s realized just how important temporal order was for conveying and
storing information in neuronal circuits, and experimenters saw how the
synaptic connections of the brain should be acutely sensitive to timing. Thus
the field of STDP was born, via the key studies of Markram and Gerstner
[45,46]. With STDP, a neuron embedded in a neuronal network can ‘deter-
mine’ which neighbouring neurons are worth connecting with, by potentiating
those inputs that predict its own spiking activity, and effectively ignoring the
rest [49]. The net result is that the sample neuron can integrate inputs with
predictive power and transform this into a meaningful predictive output, even
though the meaning itself is not strictly known by the neuron.

An early example of using such models in associative memory can be found
in [50]. This introduces ‘spiking’ neurons in a Hopfield [27,36] network: by
the term spiking, three main features are implied, which are: (a) a neuron fires
when a given threshold is reached; (b) it then undergoes a period of rest, which
is referred to as ‘refractoriness’; and (c) noise may be added to the firing rates.
The synapses connecting the neurons follow a Hebbian learning rule (with no
explicit competition) whereby incoming patterns are learnt, and their retrieval
analysed along the lines of Section 2 as a function of various parameters.

While models of neurons themselves are the subject of considerable dis-
cussion [51], these early models have been greatly refined in recent times and
are usefully summarised in [52]. However, as pointed out in [49], these
theories are limited by the types of plasticity invoked in the models concerned.
Indeed, in [53], it is tacitly acknowledged that without appropriate compen-
satory mechanisms (referred to there as being ‘non-Hebbian’), Hebbian learn-
ing alone is not able to account for the reliable storage and recall of memories;
the necessary mechanisms invoked in [53] involve, in addition to the Hebbian
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LTP/LTD, the (implicitly competitive) mechanism of heterosynaptic up- and
down-regulation of synapses, as well as transmitter-induced plasticity and
consolidation. This indeed reinforces the perceived need for some form of
competition, as well as a somewhat more parsimonious form of modelling
where possible.

Before concluding, we also mention that most STDP models can be aver-
aged and reduced to rate-based models with certain assumptions: if all nodes
interact with each other, they can be reduced to correlation-based models [54]
whereas if nearest-neighbour interactions exist, the models that result are
similar to the BCM model [55]. However, the fast dynamics of neurons, on
which the STDP models are based, continue to attract a lot of research
interest. Typically, models of integrate-and-fire neurons on networks have
been extensively studied, and their different dynamical regimes explored
[56]. In [57], the memory performance of a class of modular attractor neural
networks has been examined, where modules are potentially fully-connected
networks connected to each other via diluted long-range connections. Interest
in this fast dynamical regime has also been fuelled by the discovery of
neuronal avalanches in the brain [58], which was followed by several dyna-
mical models of neural networks [59,60], where the statistics of avalanches
were investigated [61–66] and reviewed in [67]. In fact, the field of spiking
neurons is now so well-established that it is the subject of textbooks – of
which an excellent example is the one by two of the most important workers
in the field, Gerstner and Kistler [35].

4. State-based models

An alternative to considering unbounded and continuous synaptic weights –
as is done in Sections 2 and 3 – is to consider discrete synapses, with a limited
number of synaptic states, whose weights are bounded. This has experimental
support [26,68] and also has the advantage that binary synapses, say, may be
more robust to noise than continuous synapses [69]. An essential property of
these models as well as real neural networks is that their capacity is finite. Such
bounded synapses have the palimpsest property, that is, new memories are
stored at the cost of old ones being overwritten [29]. This is in marked
contrast to the case of unbounded synapses where the overall quality of
both old and new memories degenerates as new information is processed.
For bounded synapses, therefore, forgetting is an important aspect of contin-
ued learning [26,28,29,70–73]. This situation – that of discrete, bounded
synapses with an explicit forgetting mechanism – is what we will focus on in
the rest of this review.

Van Rossum and coworkers [21,74] have done a body of work on such
state-based models; they have shown in particular that there is not an over-
whelming reduction in the storage capacity of discrete synapses as compared
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to continuous ones. In their work, each synapse is described with a state-
diagram and each state has an associated synaptic weight. The simplest case of
binary synapses (‘synaptic switches’) has been extensively used in earlier
mathematical models [21,75–77]. Interactions between synapses are incorpo-
rated in the state diagrams. Typically, Markov descriptions are used, and the
eigenvalues of the Markov transition matrices give the decay times of the
synaptic weights.

The above mechanism of synaptic plasticity has, however, been shown to be
rather inefficient when synapses change permanently [78]. Pure plasticity
indeed does not provide a mechanism for protecting some memories while
leaving room for other, newer, memories to come in, hence leading to the
need for the mechanism of metaplasticity [70–72].2 In order to improve
performance, Fusi et al. [79] proposed a cascade model of a synapse with
many hidden states, which they claimed was able to store long-term memories
more efficiently, with a decay that was power-law rather than exponential in
time. The pathbreaking idea behind the work of [79] was that the introduction
of ‘hidden states’ for a synapse would enable the delinking of memory life-
times from instantaneous signal response: while maintaining quick learning, it
would also enable slow forgetting. In the original cascade model of [79], this
was implemented by the storage of memories at different ‘levels’: the relaxa-
tion times for the memories increased as a function of depth. It was assumed
that short-term memories, stored at the uppermost levels, would decay as a
consequence of their replacement by other short-term memories (‘noise’). On
the other hand, longer-lasting memories remained largely immune to such
noise as they were stored at the deeper levels, which were accessible only
rarely. This hierarchy of timescales models the phenomenon of metaplasticity
[80,81] and will be discussed in detail below.

4.1. Fusi’s cascade model: a quantitative formulation

Fusi’s model [79] of a metaplastic binary synapse with infinitely many hidden
states was formulated quantitatively and investigated in [82]. Each state is here
labelled by its depth n¼ 0; 1;:::; At every discrete time step t, the synapse is
subjected either to an LTP signal (encoded as εðtÞ ¼ þ1) or to an LTD signal
(encoded as εðtÞ ¼ �1), where εðtÞ ¼ �1 is the instantaneous value of the
input signal at time t.

The model, portrayed in Figure 1, is defined as follows: The application of
an LTP signal can have three effects [82]:

• If the synapse is in its � state at depth n, it may climb one level ðn !
n� 1Þ with probability αn. (This move was absent in the original model.)

• If it is in its � state at depth n, it may alternatively hop to the uppermost
þ state with probability βn.
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• If it is already in its þ state at depth n, it may fall one level ðn ! nþ 1Þ
with probability γn.

Long-term memories will be stored in the deepest levels of the synapse,
because of the persistent application of unimodal signals. The effect of noise
on such a long-term memory here is to replace a long-term memory by a
short-term memory of the opposite kind. If, for example, the signal is com-
posed of all þþþþþþþ , an isolated � event could be seen to represent
the effect of noise. In this case, the Fusi model [79] predicts that the signal is
thrown from a deep positive level of the synapse to the uppermost level of the
negative pole. Seen differently, this mechanism converts a long-term memory
of one kind to a short-term memory of the opposite kind.

Along the lines of [79,82], the transition probabilities of this model are
assumed to decay exponentially with level depth n:

αn ¼ αe�ðn�1Þμd ; βn ¼ βe�nμd ; γn ¼ γe�nμd : (7)

The corresponding characteristic length,

�d ¼
1
μd

; (8)

is one of the key ingredients of the model, which measures the number of fast
levels at the top of the synapse. It will be referred to as the dynamical length of
the problem. The choice made in [79] corresponds to e�μd ¼ 1

2 , that is,
μd ¼ ln 2. A different characteristic length, the static length �s, is given by

�s ¼
1
μs
: (9)
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Figure 1. Schematic representation of Model I. Arrows denote possible transitions in the
presence of an LTP signal (ε ¼ þ1, left panel) and of an LTD signal (ε ¼ �1, right panel).
Corresponding transition probabilities are indicated. In each panel, the left (resp. right)
column corresponds to the � (resp. þ ) state. The model studied in this work is actually
infinitely deep (after Ref [82]).
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This is referred to as the static length of the problem, and gives a measure of
the effective number of occupied levels in the default state [82]. The regime of
most interest is where �s is moderately large, so that the default state extends
over several levels. The mean level depth

hnist ¼ 1
eμs � 1

¼ �s � 1
2
þ � � � (10)

is then essentially given by the static length.
The level-resolved output signal of level n at time t:

DnðtÞ ¼ QnðtÞ � PnðtÞ (11)

and the total output signal at time t:

DðtÞ ¼
X
n�0

DnðtÞ (12)

can be expressed in terms of the probabilities PnðtÞ (or QnðtÞ) for the synapse
to be in the � state (or the þ state) at level n ¼ 0; 1; . . . at time t ¼ 0; 1; . . .

We now describe the effect of an LTP signal, that is, a sustained input of
potentiating pulses lasting for T consecutive time steps (εðtÞ ¼ þ1 for
1 � t � T) on the model synapse. The synapse, assumed to be initially in its
default state [82], will get almost totally polarized in response to the persistent
signal.

This saturation phenomenon is illustrated in Figure 2, which shows the
output signal DðtÞ for several durations T of the LTP signal. The synapse
slowly builds up a long-term memory in the presence of a long enough LTP
signal, as the memorized signal moves to deeper and deeper levels. At the end
of the learning phase (t ¼ T), the polarisation profile will have the form of a
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Figure 2. Plot of the output signal DðtÞ against time t, for several durations T of the LTP signal
for parameter values β ¼ 0:2, γ ¼ 0:5, and �s ¼ �d ¼ 5 (after Ref [82]).
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sharply peaked travelling wave, around a typical depth which grows according
to the logarithmic law [82]

nðTÞ � �d ln γT: (13)

After the signal is switched off, the total output signal decays. The late stages
of the forgetting process are characterized by a universal power-law decay of
the output signal:

DðtÞ,t�θ: (14)

This is known as power-law forgetting [83–85]. The forgetting exponent

θ ¼ 1þ �d
�s

(15)

is always larger than unity and depends on the ratio of the dynamical and
static lengths �d and �s. As Equation (14) shows, it has no dependence on the
duration of the learning phase, in keeping with the requirements of
universality.

4.2. Comparison of cascade model with experiment

The cascade model and its variants have frequently been criticised for being
somewhat abstract; one response has been to come up with ever-more sophis-
ticated models for synaptic consolidation which incorporate the multiple
timescales inherent in the cascade model. A three-layered model of synaptic
consolidation has been proposed that accounts for data across a large range of
experimental conditions [86]; while it has a daunting number of parameters –
17 –, it is able to incorporate the retention of long-term memories. Fusi’s own
recent extension of the cascade model is also rather intricate: memories are
stored and retained through complicated coupled processes operating on
multiple timescales. This is achieved by combining multiple dynamical pro-
cesses that initially store memories in fast variables, and then progressively
transfer them to slower variables. It has the advantage of getting a larger
memory capacity, while the corresponding disadvantage is that it is even more
abstract than his earlier model, so that involved biological processes have to be
explained via systems of communicating vessels [87].

We choose here instead to highlight a link with an experiment [88] whose
findings are explained by the complex synaptic architectures of Fusi’s original
model [79], to combat the proposition that the cascade model is ‘too abstract’
to be useful. In particular, the experiment involves a single synapse connecting
two cells, so that the Fusi model of a single synapse is appropriate. Specifically,
in a system comprising an excitatory synapse between Lymnaea pre- and post-
synaptic neurons (visceral dorsal 4 (VD4) and left pedal dorsal 1 (LPeD1-
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Excitatory)), a novel form of short-term potentiation was found, which was
use-, but not time-dependent [88]. Following a tetanic stimulation (,10 Hz)
in the presynaptic neuron with a minimum of seven action potentials, the
synapse became potentiated whereby a subsequent action potential triggered
in the presynaptic neuron resulted in an enhanced postsynaptic potential.
Further, if an inducing tetanic stimulation was activated, but a subsequent
action potential was not triggered, the synapse was shown to remain poten-
tiated for as long as 5 h. However, once this action potential was triggered, the
authors found that the synaptic strength rapidly returned to baseline levels. It
was also shown that this form of synaptic plasticity relied on the presynaptic
neuron, and required pre- (but not post-) synaptic Ca2þ/calmodulin-depen-
dent kinase II (CaMKII) activity. Hence, this form of potentiation shares
induction and de-potentiation characteristics similar to other forms of
short-term potentiation, but exhibits a timeframe analogous to that of long-
term potentiation.

In [89], this experiment was interpreted via a variant of the cascade model
described above, as follows: after a process of tetanic stimulation, the initial
action potentials, interpreted as a non-random signal, cumulatively built up a
long-term memory of the signal in the deepest synaptic levels. The synapse
dynamics were then frozen so that further discharge was prevented. When a
further action potential was applied, the synaptic dynamics restarted (‘use’-
dependence): the release of the accumulated memory from the deepest levels
of the synapse constituted the observed enhancement of the output signal
described in [88]. While this enhancement is plausibly accounted for by the
model of metaplastic synapses [82], the explanation of the freezing of the
synaptic dynamics and its subsequent use-dependence needed the introduc-
tion of a stochastic and bistable biological switch to model the role of kinase
(CaMKII) in the actual experiment [88].

Specifically, the synapse (Figure 1), assumed to be initially in its default
state, is subjected to a sustained LTP signal of duration T1 (i.e. the application
of T1 action potentials), and to a single action potential at a much later time
(T2 � T1). It is subjected to a random input at all the other instants of time
(εðtÞ ¼ þ1 for 1 � t � T1 and for t ¼ T2, else εðtÞ ¼ 0). In the regime where
the number of action potentials T1 of the initial signal is larger than some
characteristic time T0 of the switch, the freezing probability of the switch at
the end of the LTP period is very high, that is, very close to unity. During this
learning phase, the output signal DðtÞ grows progressively from Dð0Þ ¼ 0 to a
large value DðT1Þ. The high value of the freezing probability at the end of this
phase typically freezes the synaptic dynamics, ensuring that this enhanced
output signal is not discharged. When the next action potential is applied at
time T2, the switch is turned off, and the synapse then relaxes via the full
discharge of the stored, enhanced output signal.
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Figure 3 shows a quantitative comparison between the theoretical predic-
tions of [82] (upper panel) with sharp-electrode electrophysiology recordings
of a VD4/LPeD1 synaptic pair (two lower panels) [89]. The black theoretical
curve corresponds to three APs triggered during tetanic stimulation, which are
insufficient to result in potentiation of a subsequent excitatory postsynaptic
potential in the LPeD1 neuron (T1 ¼ 3 	 T0, so that the switch remains off).
The red theoretical curve corresponds to 11 APs, resulting in a potentiated
subsequent response (T1 ¼ 11 � T0, so the switch is turned on and the
synapse is frozen). The model biological switch used to model the action of
kinase in [89] displays an essential bistability so that the phenomenon
described above is observed more or less frequently depending on the differ-
ence between the duration T1 of the initial LTP signal and the characteristic
time T0 of the switch.
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Figure 3. An integrative figure showing the predictive model (upper panel) and sharp-
electrode electrophysiology recordings of a VD4/LPeD1 synaptic pair (two lower panels).
While 3 action potentials triggered during tetanic stimulation are insufficient to result in
potentiation of a subsequent excitatory postsynaptic potential (EPSP) in the LPeD1 neuron, 11
action potentials elicited during tetanic stimulation result in a potentiated response, as
predicted by the model (after Ref [89]).

770 A. MEHTA



Thus, despite its seeming abstraction, the basic ideas of Fusi’s cascade
model can indeed be related to real experimental data; in fact, such complex
synaptic architectures provide fertile ground for the inclusion of multiple
timescales which are essential to the modelling of long-term memory.

5. Synaptic dynamics: the need for competition

In the models of the preceding section, while synapses have been central to the
acquisition and recall of long-term memory, there has been no mention of
their embedding networks, in particular to do with the neurons that synapses
connect. In this section, we return to the concepts of Section 2 and to the
explicit mechanisms of synaptic strengthening and weakening that result from
neuronal firing within a network. We have already discussed in Section 3
several phenomenological models of synaptic plasticity, where the need for
competitive dynamics has been made clear. In the following, we elaborate on
several ways in which these have been implemented in the neuroscience
literature.

In the following, we follow the lines of argument of Van Ooyen’s excellent
review article on synaptic competition [90], where a distinction is first made
between independent and interdependent competition. In interdependent com-
petition, victors emerge as a result of interactions between participants, such
as in a sporting event. Interdependent competition is frequently considered,
for example, in population biology; here, two species are said to compete if
they try to limit the growth of each others’ population. In independent
competition, on the other hand, the participants do not interact, but are rather
chosen on the basis of some sort of contest. This kind of competition is
reminiscent of competitive learning which was introduced by Kohonen [91],
and which will form the basis of the rest of this article.

In neural network models based on competitive learning, only synapses
connected to the neurons most responsive to stimuli have their strengths
changed. What is implicit here is that these stimuli come from presynaptic
neurons so that their correlated transmission to postsynaptic neurons causes
the corresponding synapses to be strengthened [92]. Such synaptic competi-
tion [31] often arises through Hebbian learning so that when the synaptic
strength of one input grows, the strength of the others shrinks. Whereas many
models phenomenologically enforce competition by requiring the total
strength of all synapses onto a postsynaptic cell to remain constant [41],
others implement biochemical processes and modified Hebbian learning rules.

To see how competition between input connections can be enforced, con-
sider n inputs, with synaptic strengths JiðtÞði¼ 1;:::;nÞ; impinging on a given
postsynaptic cell at time t. Simple Hebbian rules for the change ΔJiðtÞ in
synaptic strength in a time interval Δt state that the synaptic strength should
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grow in proportion to the product of the postsynaptic activity level yðtÞ and
the activity level xiðtÞ of the ith input. Thus

ΔJiðtÞ / yðtÞxiðtÞΔt : (16)

If two inputs activate a common target, one needs competition to make one of
the synaptic strengths grow at the expense of the other. A common method to
achieve this is to constrain the total synaptic strength via synaptic normal-
isation – this is the constraint that

Xn
i

Jpi ðtÞ ¼ K; (17)

with K constant and the integer p usually taken to be 1 or 2. Specifically, p ¼ 1
conserves the total synaptic strength, whereas p ¼ 2 conserves the length of
the weight vector. At each time interval Δt, following a phase of Hebbian
learning, in which Jiðt þ ΔÞ ¼ JiðtÞ þ ΔJiðtÞ, the new synaptic strengths are
forced to satisfy the normalization constraint of Equation (17). Typically this
can be enforced by one of two processes: multiplicative or subtractive normal-
isation. These ensure that synaptic strengths do not grow without bounds.

In subtractive normalization [43,93], the same amount is subtracted from
each weight to enforce the constraint. In multiplicative normalization [94–97]
on the other hand, each synaptic weight Jiðt þ ΔtÞ is scaled in proportion to its
size. A two-layer model is there proposed, where the stimuli in neurons of the
input layer are sent to an output layer of neurons. If the neuronal inputs are
above some specified threshold, then the responses in the output layer are
calculated, taking into account the pattern of synaptic connections; weights
are updated by a Hebbian rule after this neuronal activity stabilises. The final
outcome of development may of course differ depending on whether multi-
plicative or subtractive normalization is used [12,98].

Kohonen [91] proposed a drastic but effective simplification of the
approach of [94]. In the latter, a few hotspots of activity typically emerged
in the output layer following the iterations of the input activity via the lateral
synapses. To obviate the considerable time taken to ensure the convergence of
these iterations, Kohonen proposed the centring of the activity in the output
layer on the so-called ‘winning’ neurons, followed by standard Hebbian
learning. This important simplification is vital to the statistical physics
approaches that will be presented in Section 6.1. Another way of viewing
this is to regard it as yet another nonlinear approach to competitive learning;
if the layer of output neurons is assumed to be connected by inhibitory
synapses, the neuron with the largest initial activity can be said to suppress
the activity of all other output neurons.

The competitive approaches described in the above paragraphs are often
described as hard, in the sense of being ‘winner-take-all’. In soft competitive
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learning, all neurons in the output layer are updated by an amount that takes
into account both their feed-forward activation and the activity of other
output neurons. This will also be seen to have equivalences with agent-based
learning models in the statistical physics approaches of Section 6.1.

Another approach for achieving competition is to modify the simple
Hebbian learning rule of Equation (16) so that both increases in synaptic
strength (LTP) and decreases in synaptic strength (LTD) can take place. If we
assume that the presynaptic activity level xiðtÞ as well the postsynaptic activity
level yðtÞ must be above some thresholds, respectively θx; θy, to achieve LTP
(and otherwise yield LTD), then a suitable synaptic modification rule is [41]

ΔJiðtÞ / ½yðtÞ � θy
½xiðtÞ � θx
Δt : (18)

Thus, if both yðtÞ and xiðtÞ are above their respective thresholds, LTP occurs;
if one is below its threshold and the other is above, LTD occurs. For this to
qualify as proper competition, the synaptic strength lost through LTD must
roughly equal the strength gained through LTP. This can only be achieved
with appropriate input correlations, which makes simple LTD a fragile
mechanism for achieving competition [41]. Another mechanism which
ensures that when some synaptic strengths increase, others must correspond-
ingly decrease – so that competition occurs – is to make one of the thresholds

variable. If the threshold θix increases sufficiently as the postsynaptic activity
yðtÞ or synaptic strength JiðtÞ increases, conservation of synaptic strength is
achievable [41]. Similarly, if the threshold θy increases faster than linearly with
the average postsynaptic activity, then the synaptic strengths will adjust to
keep the postsynaptic activity near a limiting value [48]. This, however, results
in temporal competition between input patterns, rather than spatial competi-
tion between different sets of synapses.

So far, causal links between seemingly correlated firings of neurons have
been assumed. As before, STDP (cf. Section 3.2) makes this explicit via its
emphasis on the relative timing of pre- and post-synaptic activity. In the
approach of [99], presynaptic activity that precedes postsynaptic spikes
strengthens a synapse, whereas presynaptic activity that follows postsynaptic
spikes, weakens it. As a consequence of the intrinsic nonlinearity of the spike
generation mechanisms, and with the imposition of hard limits on synaptic
strengths, STDP has the effect of keeping the total synaptic input to the
neuron roughly constant, independent of the presynaptic firing rates. This
approach, of rewarding truly correlated neuronal activity while penalising its
absence, has been taken into account in the models of synaptic dynamics
presented in Section 6.2.
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6. Statistical physics models of competing synapses

The emergence of new areas in physics has strongly contributed to the
development of analytical tools; this is particularly true for the field of com-
plex systems. A particular area which is of relevance in the context of this
review is that of agent-based modelling; here, local interactions among agents
may give rise to emergent phenomena on a macroscopic scale [100]. In these
models, agents on the sites of appropriately defined lattices interact with each
other; their collective behaviour is then analysed in terms of global outcomes.
A typical example arises in, say, the context of financial markets; trading rules
between different agents at an individual level can result in specific sets of
traders, or their representative strategies, winning over their competitors. This
makes for interesting analogies with competitive learning; approaches based on
this have therefore successfully been used to investigate a wide variety of
topics, ranging from the diffusion of innovations [101,102] through gap
junction connectivity in the pancreas [103] to the dynamics of competing
synapses [104–106]. It is the latter which will concern us here, but in the
interests of completeness, we first briefly review an agent-based model of
competitive learning in the following [101].

6.1. An agent-based model of competitive learning

The underlying idea [101] is that the strategy of a given agent is to a large
extent determined by what the other agents are doing, through considerations
of the relative payoffs obtainable in each case. Agents are located at the sites of
a regular lattice, and can be associated with one of two types of strategies.
Every agent revises its choice of type at regular intervals, and in this it is
guided by two rules: a majority rule, reflecting the tendency of agents to align
with their local neighbourhood, followed by an adaptive performance-based
rule, via which the agent chooses the type that is more successful locally.

Assuming that the agents sit at the nodes of a d-dimensional regular lattice
with coordination number z ¼ 2d, the efficiency of an agent at site i is
represented by an Ising spin variable:

ηiðtÞ ¼
þ1 if i is þ at time t;
�1 if i is � at time t:

�
(19)

The evolution dynamics of the lattice is governed by two rules. The first is a
majority rule, which consists of the alignment of an agent with the local field
(created by its nearest neighbours) acting upon it, according to:

ηiðtþT1Þ ¼
þ1
�1
�1

8<
: w:p:

1
2

if hi tð Þ> 0;
if hi tð Þ ¼ 0;
if hi tð Þ< 0;

(20)
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Here, the local field

hiðtÞ ¼
X
jðiÞ

ηjðtÞ (21)

is the sum of the efficiencies of the z neighbouring agents j of site i and τ1 is
the associated time step. Next, a performance rule is applied. This starts with
the assignment of an outcome σi (another Ising-like variable, with values of
� 1 corresponding to success and failure respectively) to each site i, according
to the following rules:

if ηiðtÞ ¼ þ1;

then σiðt þ τ2Þ ¼ þ1 w:p: pþ;
�1 w:p: 1� pþ;

�

if ηiðtÞ ¼ �1;

then σiðt þ τ2Þ ¼ þ1 w:p: p�;
�1 w:p: 1� p�;

�
(22)

where τ2 is the associated time step and p� are the probabilities of having a
successful outcome for the corresponding strategy. With Nþ

i and N�
i denoting

the total number of neighbours of a site i who have adopted strategies þ and
� respectively, and Iþi (I�i ) denoting the number of successful outcomes
within the set Nþ

i (N�
i ), the dynamical rules for site i are:

if ηiðtÞ ¼ þ1 and
Iþi tð Þ
Nþ

i tð Þ <
I�i tð Þ
N�

i tð Þ ;

then ηiðt þ τ3Þ ¼ �1 w:p: εþ
þ1 w:p: 1� εþ;

�

if ηiðtÞ ¼ �1 and
I�i tð Þ
N�

i tð Þ <
Iþi tð Þ
Nþ

i tð Þ ;

then ηiðt þ τ3Þ ¼ þ1 w:p: ε�
�1 w:p: 1� ε�:

�
(23)

Here, the ratios IiðtÞ
NiðtÞ are nothing but the average payoff assigned by an agent

to each of the two strategies in its neighbourhood at time t (assuming that
success yields a payoff of unity and failure, zero). Also, τ3 is the associated
time step and the parameters ε� are indicators of the memory associated with
each strategy. In their full generality, ε and p are independent variables: the
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choice of a particular strategy can be associated with either a short or a long
memory.

Setting the timescales

τ2 ! 0; τ1 ¼ τ3 ¼ 1; (24)

the above steps of the performance rule are recast as effective dynamical rules
involving the efficiencies ηiðtÞ and the associated local fields alone:

if ηiðtÞ ¼ þ1;

then ηiðt þ 1Þ ¼ þ1 w:p: wþ½hiðtÞ

�1 w:p: 1� wþ½hiðtÞ
 ;

�

if ηiðtÞ ¼ �1;

then ηiðt þ 1Þ ¼ þ1 w:p: w�½hiðtÞ

�1 w:p: 1� w�½hiðtÞ
 :

�
(25)

The effective transition probabilities w�ðhÞ are evaluated by enumerating the
2z possible realizations of the outcomes σj of the sites neighbouring site i, and
weighting them appropriately. The specific transition probabilities computed
will depend on the embedding lattice or network chosen [101].

The above rules are appropriate for cases where the majority rule is clearly
definable, that is, where there is a mix of agent types. The situation is less clear
when there are large areas of a single species, since then, at least with a
sequential update, there is a tendency for any exceptions to revert to the
majority type, whatever their performance. The way around this in [101]
was to formulate a so-called ‘cooperative’ model, where, say, a more successful
agent surrounded by neighbours who had failed, was able to convert all of
them to the more successful type, thus stabilising his own success. This hard
rule is like the ‘winner-takes-all’ model of synaptic competition alluded to
earlier in this review; analogously to that case, there is also a soft rule, where,
while a significant majority of agents were coerced into changing their type,
not all were so obliged. In [101], all these models were explored via ordered
sequential updates of the agents, and phase diagrams of their extremely
different dynamical behaviour in various regimes were presented. The agents
were there also deemed to be memoryless, that is, they did not take earlier
results into account when they made their choices. These restrictions were
progressively removed in [107,108], so that the behaviour of the model with
different updates, different levels of memory, as well as different interactions
was explored.
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6.2. A minimal model of synaptic dynamics with emergent long-term
memory

The diligent reader will have noted the resemblance between Equations (19)
and (23) above, and some of the equations governing neuronal and synaptic
dynamics earlier presented in this article. Indeed, the detailing of the agent-
based model of competitive learning [101] was to motivate just such a
comparison. For example, neuronal firings are subject to the kind of local
field embodied by Equation (21); the performance in both cases (successful
neuronal firings and successful outcomes in the model of [101]) in turn lead to
other dynamical changes, and result in global outcomes. These were precisely
the lines of thought that led to the use of such agent-based models of
competitive learning in some of the early, and somewhat simple-minded,
models of synaptic dynamics [104,105].

Let us now recall what is needed for a minimal model of memory, via
synaptic dynamics. Both cooperation and competition are needed for a mean-
ingful model of synaptic plasticity [41], with competition acting as a check on
the unstable growth of synaptic weights when cooperation alone is invoked
[30,109]. Since synapses have finite storage capacities, one should also include
a representation of the spontaneous relaxation of synapses when space is
created via the spontaneous decay of old memories (cf. the palimpsest effect
[28,29]). This is indeed what is done in the model network of synapses and
neurons [106] that we will describe in the following. Like the Fusi [79] model,
it is a model of discrete rather than continuous synapses; unlike it, however,
here, there are explicit mechanisms of synaptic weight change via mechanisms
of competing and cooperating synapses that depend intimately on neuronal
firing rates.

The dynamical regime chosen in [106] is that of slow synaptic dynamics,
where neuronal firings are considered stochastic and instantaneous; the
synapses ‘see’ only the mean firing rates of individual neurons, characterising
them as active or inactive, on that basis. As a result of this temporal coarse-
graining, the overall effect of the microscopic noise can be represented by
spontaneous relaxation rates from one type of synaptic strength to the other,
so far as the palimpsest mechanism is concerned. Cooperation between
synapses is incorporated via the usual Hebbian viewpoint, while the most
crucial and original part of the formalism involves synaptic competition where,
along the lines of Kohonen’s arguments [91], synapses are converted to the
type most responsible for neural activity in their neighbourhood [104,105].

The choice of basis is that of a fully connected network, as depicted in
Figure 4, so that mean-field theory applies in the thermodynamic limit of an
infinitely large network.

Neurons live on the nodes (sites) of the network, labelled i ¼ 1; . . . ;N. The
activity state of neuron i at time t is described by a binary activity variable:
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νiðtÞ ¼ 1 if i is active at time t ;
0 if i is inactive at time t :

�
(26)

Active neurons are those whose instantaneous firing rate exceeds some
threshold.

Synapses live on the undirected bonds of the network. The synapse ðijÞ lives
on the bond joining nodes i and j. The strength Jij of synapse ðijÞ at time t is
also described by a binary variable:

σijðtÞ ¼ þ1 if ðijÞ is strong at time t ;
�1 if ðijÞ is weak at time t :

�
(27)

Strong synapses are those whose strength JijðtÞ exceeds some threshold.

Neuronal dynamics
Neurons have an instantaneous stochastic response to their environment. The
activity of neuron i at time t reads

νiðtÞ ¼ 1 w:p: FðhiðtÞÞ ;
0 w:p: 1� FðhiðtÞÞ ;

�
(28)

where FðhÞ is an increasing response function of the input field hiðtÞ. The
latter is a weighted sum of the instantaneous activities of all other neurons:

hiðtÞ ¼ 1
N � 1

X
j�i

ðaþ bσijðtÞÞνjðtÞ: (29)

Strong synapses (σij ¼ 1) enter the sum through a synaptic weight aþ b, while
weak ones (σij ¼ �1) have a synaptic weight a� b. We assume a and b are

νi

νj

σij

Figure 4. The fully connected network for N ¼ 4. Neurons with activities νi ¼ 0; 1 live on the
nodes. Synapses with strength types σij ¼ �1 live on the bonds (after Ref [106]).
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constant all over the network. All synapses are therefore excitatory for b> 0,
and inhibitory for b< 0.

In the following, we focus our attention onto the slow plasticity dynamics
of the synaptic strength variables σijðtÞ. It will therefore be sufficient to
consider the mean activities �νiðtÞ and the mean input field �hiðtÞ, defined by
averaging over a time window which is large w.r.t. the characteristic timescale
of neuron firings, but short w.r.t. that of synaptic dynamics. These mean
quantities obey

�νiðtÞ ¼ Fð�hiðtÞÞ (30)

and

�hiðtÞ ¼ 1
N � 1

X
j�i

ðaþ bσijðtÞÞ�νjðtÞ: (31)

In most of this work we shall consider a spatially homogeneous situation in
the thermodynamic limit of a large network. In this case the key quantity is
the mean synaptic strength

JðtÞ ¼ 2
NðN � 1Þ

X
ðijÞ

σijðtÞ; (32)

which does not fluctuate anymore. The mean neuronal activity �νðtÞ and the
mean input field �hðtÞ are related to JðtÞ by the coupled non-linear equations

�νðtÞ ¼ Fð�hðtÞÞ (33)

and

�hðtÞ ¼ ðaþ bJðtÞÞ�νðtÞ: (34)

Consider first the case where there are as many strong and weak synapses, so
that the mean synaptic strength vanishes (J ¼ 0). We have then �h ¼ a�ν, so
that the mean neuronal activity �ν obeys �ν ¼ Fða�νÞ. We assume that the
solution to that equation is �ν ¼ 1

2 , meaning that there are as many active as
inactive neurons on average. We further simplify the problem by linearising
the coupled Equations (33) and (34) around this symmetric fixed point. We
thus obtain the following expression:

�νðtÞ ¼ f ðJðtÞÞ ¼ 1
2
ð1þ εJðtÞÞ: (35)

The slope of the effective response function,

ε ¼ bF0ða2Þ
1� aF0ða2Þ

; (36)
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is one of the key parameters of the model.3 It has to obey εj j< 1. It is positive
in the excitatory case (b> 0), so that f ðJÞ is an increasing function of J, and
negative in the inhibitory case (b< 0), so that f ðJÞ is a decreasing function of J.

Synaptic plasticity dynamics
Synaptic strengths evolve very slowly in time, compared to the fast timescale
of the firing rates of neurons. It is therefore natural to model synaptic
dynamics as a stochastic process in continuous time [110], defined in terms
of effective jump rates between the two values (strong or weak) of the synaptic
strength.

The model includes the following three plasticity mechanisms which drive
synaptic evolution:

1. Spontaneous relaxation mechanism. Synapses may spontaneously change
their strength type, either from weak to strong (potentiation) or from strong
to weak (depression) as a result of noise This spontaneous relaxation mechan-
ism, illustrated in Figure 5, translates into

σij ¼ �1 ! þ1 with rate Ω ;
σij ¼ þ1 ! �1 with rate ω :

�
(37)

2. Hebbian mechanism. When two neurons are in the same state of (in)
activity, the synapse which connects them strengthens; when one of the
neurons is active and the other is not, the interconnecting synapse weakens.
This is the well-known Hebbian mechanism [42], which we implement as
follows:

νiðtÞ ¼ νjðtÞ : σij ¼ �1 ! þ1 with rate α :
νiðtÞ�νjðtÞ : σij ¼ þ1 ! �1 with rate α :

�
(38)

3. Polarity mechanism. This is a mechanism to introduce synaptic competi-
tion, introduced for the first time in [104,105], which converts a given synapse
to the type of its most ‘successful’ neighbours, i.e. those which augment the
firing of an intermediate neuron. Thus: if a synapse ðijÞ connects two neurons
with different activities at time t, e.g. νiðtÞ ¼ þ1 and νjðtÞ ¼ �1, it will adapt
its strength to that of a randomly selected synapse ðikÞ connected to the active

(weak) (strong)

Ω

ω

−1 +1

Figure 5. The spontaneous relaxation plasticity mechanism, with its potentiation rate Ω and
depression rate ω (after Ref [106]).
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neuron i. If the selected synapse is strong, the update σij ¼ �1 ! þ1 takes
place with rate β; if it is weak, the update σij ¼ þ1 ! �1 takes place with rate
γ. Therefore:

σij ¼ �1 ! þ1 with rate 1
2 β ð1þ JðtÞÞ ;

σij ¼ þ1 ! �1 with rate 1
2 γ ð1� JðtÞÞ :

�
(39)

Mean-field dynamics
For a spatially homogeneous situation in the thermodynamic limit, the mean
synaptic strength JðtÞ obeys a nonlinear dynamical mean-field equation of the
form

dJ
dt

¼ PðJÞ: (40)

The explicit form of the rate function PðJÞ is obtained by summing the
contributions of the above three plasticity mechanisms. In the most general
situation, the model has five parameters: the slope ε of the effective response
function (35) and the rates involved in the three plasticity mechanisms. The
resulting rate function is a polynomial of degree 4 [106]:

PðJÞ ¼ p4J
4 þ p2J

2 � ðΩþ ωþ αÞJ þ Ω� ω� δ; (41)

with

p4 ¼ �δε2; p2 ¼ ðαþ δÞε2 þ δ; δ ¼ 1
4ðγ� βÞ: (42)

The spontaneous relaxation mechanism yields a linear rate function, while the
Hebbian mechanism is responsible for a quadratic non-linearity and the
polarity-driven competitive mechanism is responsible for a quartic non-line-
arity. This modelling of synaptic competition satisfies the requirement on
nonlinearity set out in Section 5 for meaningful synaptic dynamics.

The parameter ε only enters (42) through its square ε2. The model therefore
exhibits an exact symmetry between the excitatory case (ε> 0) and the inhi-
bitory one (ε< 0). (Since none of the plasticity mechanisms distinguishes
between these two cases, this symmetry is to be expected). More generally,
the model is invariant if the effective response function f ðJÞ is changed
into 1� f ðJÞ.

Generic dynamics
The rate function PðJÞ has an odd number of zeros in the interval � 1< J < þ
1 (counted with multiplicities), that is, either one or three. These zeros
correspond to fixed points of the dynamics. As a consequence, the model
exhibits two generic dynamical regimes, as shown in Figure 6.
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In Regime I (see Figure 6, left), there is a single attractive (stable) fixed
point at J0. The mean synaptic strength JðtÞ therefore converges exponentially
fast to this unique fixed point, irrespective of its initial value, according to

JðtÞ � J0,e�t=τ0 : (43)

The corresponding relaxation time τ0 reads

τ0 ¼ � 1
P0ðJ0Þ : (44)

where τ0 and J0 are obtainable in terms of the model parameters [106].
In Regime II (see Figure 6, right), there are two attractive (stable) fixed

points at J1 and J2, and an intermediate repulsive (unstable) one at J3. The
mean synaptic strength JðtÞ converges exponentially fast to either of the
attractive fixed points, depending on its initial value, namely to J1 if �
1< Jð0Þ< J3 and to J2 if J3 < Jð0Þ< þ 1. The corresponding relaxation times
read

τ1 ¼ � 1
P0ðJ1Þ ; τ2 ¼ � 1

P0ðJ2Þ : (45)

In other words, Regime II allows for the coexistence of two separate fixed
points, leading to network configurations which are composed of largely
strong/weak synapses. In fact, it is the polarity-driven competitive mechanism
which gives rise to the quartic non-linearity, essential for such coexistence.

Critical dynamics
When two of the three fixed points merge at some Jc, the dynamical system
(40) exhibits a saddle-node bifurcation. In physical terms, the dynamics
become critical. We have then

PðJcÞ ¼ P0ðJcÞ ¼ 0; (46)

so that the critical synaptic strength Jc is a double zero of the rate function

PðJÞ (see Figure 7). There is a left critical case, where J1 ¼ J3 ¼ JðLÞc , while J2

P(J)

J0

Regime I

J

+1

−1

P(J)

J1 J2J3

Regime II

J

+1

−1

Figure 6. The two possible generic dynamical regimes. Left: Regime I (one single attractive
fixed point, J0). Right: Regime II (two attractive fixed points, J1 and J2, and an intermediate
repulsive one, J3) (after Ref [106]).
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remains non-critical, and a right one, where J2 ¼ J3 ¼ JðRÞc , while J1 remains
non-critical. The critical synaptic strength obeys Jc > 1

3 [106]. We thus con-
clude that the critical point is always strengthening, as Jc is always larger then
the ‘natural’ initial value Jð0Þ ¼ 0, corresponding to a random mixture of
strong and weak synapses in equal proportions.

The mean synaptic strength exhibits a universal power-law relaxation to its
critical value, of the form

JðtÞ � Jc � Ac

t
: (47)

The asymptotic 1=t relaxation law (47) holds irrespective of the initial value
Jð0Þ, provided it is on the attractive side of the critical point, that is, �
1< Jð0Þ< Jc in the left critical case (where Ac < 0), or Jc < Jð0Þ< þ 1 in the
right critical one (where Ac > 0).

To sum up, the non-critical fixed points of Regimes I or II are characterised by
exponential relaxation; the corresponding relaxation times, whether long or short,
are always finite. Anywhere along the critical manifold, on the other hand, one
observes a universal power-law relaxation in 1=t. Such behaviour corresponds to an
infinite relaxation time at least in terms of the mean synaptic strength J.

In conclusion, this minimal model is able to show the emergence of power-
law relaxation or long-termmemory. It is clear that the most crucial one of these
is the mechanism of synaptic competition, which is in reassuring accord with
the importance given to such competition by neuroscientists [31] (Section 5).
Purely analytical work is able, however, just to give a flavour of the emergence of
long-term behaviour in this model via the critical behaviour of the mean
synaptic strength J. If realistic learning and forgetting of patterns are to be
implemented with this model, considerable computational work needs to be
done. Only the identification of the parameter spaces where criticality is
obtained in response to random input patterns will clarify, at least phenomen-
ologically, the routes to long-term memory in this relatively minimal model.

P(J)

Jc
J2

Left critical

J

+1

−1

P(J)

Jc
J1

Right critical

J

+1

−1

Figure 7. The two possible kinds of critical dynamical behaviour: left critical case
(J1 ¼ J3 ¼ JðLÞc ) and right critical case (J2 ¼ J3 ¼ JðRÞc ) (after Ref [106]).
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7. Discussion

Even quantitative approaches to the subject of memory are truly interdisci-
plinary; contributions range from mathematical psychology through quanti-
tative neuroscience to statistical physics. The narrowing of focus to physics
still provides a huge range of contributions: from the seminal contributions
on Hopfield networks with their spin-glass analogies, through the emphasis
on causality with spiking neurons, both of which involve fast neuronal
dynamics, to the synaptic-dynamics-centred approaches that have followed,
with the boundedness of synaptic weights on discrete synapses, involving
multiple ‘hidden’ synaptic states, as well as the attribution of competitive and
cooperative dynamics to synapses in model networks. In this review, we have
sought to highlight those approaches which generate long-term memory;
while short-term memory, characterised by exponential relaxation times, is
ubiquitous, long-term memory is characterised by power-law forgetting, a
much slower process.

Another emphasis of this review is on synaptic competition, whose
importance has long been understood by the neuroscience community,
but which has only very recently been explicitly included in model net-
works. This review has gone into as much detail in the need for this
mechanism, as its inclusion in biophysical as well as physics-based model-
ling. In the latter case, the recent advent of agent-based modelling techni-
ques derived from game theory [111] and extended to cover non-
equilibrium situations, has been particularly useful.

What is still a matter of debate is the extent to which phenomenological
models, on which this review has focused, are useful in unravelling the
phenomenon of memory storage and recall. While it is certainly true that
detailed biophysical models are overall better in matching experimental
data point by point, there is a great deal to be said in favour of the
formulation of minimal models. These can, unlike the former, at least
benefit from a few analytical insights, which can help both experimentalists
and theorists identify the parameters that are truly important in what are
typically huge parameter spaces, most recently believed to be in 11 dimen-
sions [112]. While these large parameter spaces are indeed inclusive by
definition, their inner workings can only be described by computer simula-
tions, which do not always give unambiguous insights on the relative
importance of parameters, or answers to physical questions like, what are
the crucial mechanisms for memory storage? This is of course not to
minimise their importance; we wish only to underscore the complemen-
tarity of the insights obtained by minimal physical models to the enigma of
memory.
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Notes

1. In the literature, this is sometimes referred to as systems consolidation, while
synaptic consolidation is traditionally used to describe the molecular mechanism
that leads to the maintenance of synaptic plasticity.

2. An older use of the term ‘metaplasticity’ relates to changes in synapses that are not
expressed as changes in synaptic efficacy, but rather alter their responses to sub-
sequent stimuli, an example of this being the sliding threshold of plasticity described
in the BCM model [48].

3. Here and throughout the following, primes denote derivatives.
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