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We propose a model of the speech perception of individual words in the presence of
mishearings. This phenomenological approach is based on concepts used in linguistics,
and provides a formalism that is universal across languages. We put forward an efficient
two-parameter form for the word length distribution, and introduce a simple represen-
tation of mishearings, which we use in our subsequent modelling of word recognition. In
a context-free scenario, word recognition often occurs via anticipation when, part-way
into a word, we can correctly guess its full form. We give a quantitative estimate of this
anticipation threshold when no mishearings occur, in terms of model parameters. As

might be expected, the whole anticipation effect disappears when there are sufficiently
many mishearings. Our global approach to the problem of speech perception is in the
spirit of an optimisation problem. We show for instance that speech perception is easy
when the word length is less than a threshold, to be identified with a static transition,
and hard otherwise. We extend this to the dynamics of word recognition, proposing an
intuitive approach highlighting the distinction between individual, isolated mishearings
and clusters of contiguous mishearings. At least in some parameter range, a dynamical
transition is manifest well before the static transition is reached, as is the case for many
other examples of complex systems.
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1. Introduction

Any language is at once the vehicle of poetry and literature, and a precise algo-

rithm for communication between its speakers, whose efficacy depends, among other

things, on the size of its lexicon and the complexity of its grammar. Any aspect of

language, be it its intrinsic structure or its decryption, is then as much a matter of

science as of art: in this sense, the study of languages is one of the first instances

of truly interdisciplinary academic activity. The analysis of languages accordingly

includes approaches that range from being very descriptive and instance-specific, to
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ones that are global and quantitative. An early instance of the latter concerns stud-

ies of the word length distribution in various texts and languages, whose historical

roots date back at least to the middle of the 19th century (see Chapter 2 of [13] for a

comprehensive review). Nowadays extensive databases such as the Leipzig Corpora

Collection [10] are available, allowing a comparison between models and data.

The aim of this work is to model the alteration of spoken words by mishearings

and the decrypting of speech in the presence of mishearings. Our approach is that of

statistical physics. Earlier applications of concepts and tools from statistical physics

to various aspects of linguistics are reviewed in [33, 21, 6, 2]. We endeavour to make

a minimal model, keeping only the essential features of the problem. Among the

most important linguistic concepts that we draw upon is the notion of ‘underspec-

ification’ [25] in speech, which increases the efficiency of the decryption processes;

this is done by incorporating an intermediate stage where mishearings are allowed

for in the construction of a possible word.

The plan of this paper is as follows. Section 2 contains some preliminary mate-

rial to be used in subsequent developments. We present our modeling of mishear-

ings and the ensuing statistics of word variants (Section 2.1), as well as a very

efficient two-parameter representation of the word length distribution across lan-

guages (Section 2.2). Our main results on speech decryption are presented in the

two following sections. Section 3 is devoted to a phenomenological analysis of the

statics of word recognition, including the highlighting of a static easy-to-hard tran-

sition (Section 3.1) and the analysis of the anticipation effect in the absence and in

the presence of mishearings (Sections 3.2 and 3.3). A more intuitive investigation of

dynamical aspects of word recognition is presented in Section 4. Section 5 contains a

brief discussion of our findings. An appendix is devoted to the statistical mechanics

of chains with intra-cluster interactions.

2. Spoken words and their variants

In the branches of linguistics devoted to spoken language, i.e., phonetics and phonol-

ogy (see [13, 16, 22, 14] for overviews), the smallest distinctive unit of speech is called

a phoneme. These phonemes, divided into vowels and consonants, are specific to a

given language and range between a minimum of 11 and a maximum of 160 [16]

across world languages. Typically, languages have 20 to 40 phonemes; English, for

example, has 44.

Lahiri and co-workers [24] sought to make this deconstruction more universal,

by relating perceived sounds to anatomical features, so that language-independent

frameworks for analysis could be set up. The universality of this scheme provided

the inspiration for our model below, which is also set up in terms of a language-

independent formalism. That said, this first attempt is far from incorporating the

subtle details of features. We refer instead to the elementary units of speech sim-

ply as ‘sounds’ which are meant to be universal across languages, along the lines

suggested by Lahiri et al [24]. Another core assumption in our model is that the
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linguistic lexicon is structureless, in the sense that the different sounds that form a

word are not correlated among themselves. This provides a useful simplified frame-

work for our investigations.

2.1. Mishearings and word variants

This section is devoted to our modeling of mishearings. For that purpose it is

sufficient to deal with the simplest of all possible lexicons, where a word of length n,

w = σ1 . . . σn, (1)

is nothing but an arbitrary sequence of n sounds, where each sound σi (i = 1, . . . , n)

is chosen among the ν sounds of the language under consideration. Within this

framework, the number Wn of ‘unique’ (i.e., distinct) words of length n,

Wn = νn, (2)

grows exponentially with the word length. This oversimplified situation giving rise

to an exponential proliferation of words will be replaced, from Section 2.2 onward,

by the more realistic setting of a finite lexicon and a non-trivial, language-specific

word length distribution.

We model mishearings as independent, random and local alterations of sounds.

In the presence of mishearings, the spoken word w is thus heard as a ‘variant’

w̃ = τ1 . . . τn, (3)

where each sound σi in the word w can either be misheard (with probability q) or

correctly heard (with probability 1− q). The mishearing probability q is one of the

key parameters of this work. We further assume for simplicity that each sound can

only be misheard in one particular way. For instance, the sound ‘n’, if misheard,

will always be perceived as ‘m’. These rules may be summarised as

τi =

{
φ(σi) with prob. q,

σi with prob. 1− q.
(4)

The alteration function φ encodes the allowedmishearing of each sound; for instance,

φ(‘n’) = ‘m’.

For a word w of length n, i.e., consisting of n sounds, if exactly k sounds at

specified positions are misheard, the rules (4) generate

ω = 2k (5)

distinct word variants w̃. For instance, for the word w = σ1σ2σ3 of length n = 3, if

the last two sounds are misheard, we have k = 2 and ω = 4. The four variants read

w̃ = σ1σ2σ3, w̃ = σ1φ(σ2)σ3, w̃ = σ1σ2φ(σ3), w̃ = σ1φ(σ2)φ(σ3). (6)

The distribution of the number ω of variants of a given word w of length n ensues

from the observation that the number k of mishearings is distributed according to
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the binomial law:

Prob{k} =

(
n

k

)
qk(1− q)n−k (k = 0, . . . , n). (7)

One key quantity in subsequent developments is the average number of variants of

a word of length n:

Ωn = 〈ω〉 =
∑

k

2k Prob{k} = eκn, (8)

with

κ = ln(1 + q). (9)

The average number of variants per word thus also grows exponentially with the

word length. The relationship between the numbers of words (see (2)) and their

variants (see (8)) can be usefully expressed in terms of a scaling exponent δ, such

that

Ωn ∼ W δ
n , (10)

i.e.,

δ =
κ

ln ν
. (11)

For typical parameter values such as q = 0.2 and ν = 20, we obtain

δ ≈ 0.06. (12)

The smallness of this value suggests that the number of variants is not overwhelm-

ingly large, so that even with mishearings words are typically rather easy to recog-

nise.

As an alternative to (8), one could instead consider the most probable number

of variants of a word of length n, defined according to the usage in the statistical

physics of disordered systems [5, 30]:

Ωn = e〈lnω〉 = eκn, (13)

with

κ = q ln 2. (14)

More generally, all the moments of the number ω of variants per word grow expo-

nentially with the word length. We have indeed

〈ωs〉 =
∑

k

2sk Prob{k} = eλ(s)n, (15)

where the exponent

λ(s) = ln(1 + (2s − 1)q) (16)

depends non-linearly on the order s of the moment under consideration. Here s is

not necessarily an integer. We have consistently κ = λ(1) and κ = λ′(0), where the
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prime denotes a derivative. A scaling law such as (15), with a non-linear dependence

of the exponent λ(s), is reminiscent of multifractal analysis [32, 37].

In the present situation, λ(s) ≈ (2s − 1)q vanishes linearly with the mishear-

ing probability as q → 0, irrespective of the order s. This justifies the use of the

average number Ωn of word variants in the subsequent analysis of various quanti-

ties. Considering another moment of that number, including the most probable one

(s → 0), would indeed essentially amount to rescaling the mishearing probability q

by a constant factor.

2.2. Word length distributions

In this section we introduce an efficient parametrisation of the word length distri-

bution across natural languages, which will be used in what follows to refine the

calculations presented in Section 2.1 of word variants generated by mishearings.

The study of the distribution of word lengths is an old subject (see Chapter 2

of [13] for a comprehensive review). An overwhelming majority of the available data

concerns the length distribution of unique written words, where each word of the

lexicon is counted once, and its length is defined as the number of its letters. A broad

variety of parametrisations of the latter distribution has been proposed, ranging

from the simplest (geometric, Poissonian, log-normal) to arbitrarily complex multi-

parameter distributions. It appears that word length distributions in most current

languages are characterised by two main features: a very rapid initial increase and

a more or less steep decay with size. In this work we put forward the use of the

Gamma distribution

pn = C nα e−βn (17)

as an efficient way to describe these features. This distribution has a minimal num-

ber of two parameters, α and β, describing respectively the rise and the fall-off of

the distribution. In spite of this simplicity, the Gamma distribution (17) has hardly

ever been used to parametrise word length distributions in their generality (see [36,

11, 8] for its use in specific instances). In Figure 1, we demonstrate that it provides

a very good parametrisation of the full word length distribution for four European

languages (upper panel) and four Asian languages (lower panel), which have be-

tween them a broad range of average word lengths. The dashed curves show fits

to (17), to be compared with empirical data (full curves) for the length distribu-

tions of unique written words provided by the Leipzig Corpora Collection [10]. The

corresponding fitted parameter values α and β are given in Table 1. Fits of similar

quality have been obtained across many other languages which we have considered.

We therefore argue that the Gamma distribution (17) has a universal validity across

most world languages.

In most languages, the word length distribution is observed to be asymmetric,

with a rise steeper than its fall. As a consequence, the average word length n is

(slightly) larger than the most probable word length n∗. Furthermore, n and n∗
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Fig. 1. Distribution of the length of written words for four European languages (upper panel) and
four Asian languages (lower panel). Full curves: data from the Leipzig Corpora Collection [10].
Dashed curves: two-parameter fits to (17).

are large enough that they can be reasonably evaluated by treating n in (17) as a

continuous variable. This yields C = βα+1/Γ(α+ 1) and

n ≈
α+ 1

β
, n∗ ≈

α

β
, (18)

where it is understood that the second estimate is rounded to the nearest integer.

The resulting numerical values of n and n∗ are also given in Table 1 for all languages

shown in Figure 1. For the European languages we have chosen, the average word

length increases consistently from English through to Finnish, as shorter words are

more and more suppressed; this is reflected by an increase of α, while β varies only

mildly. On the other hand, for the Asian languages we have chosen, both α and β

show appreciable variations.
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Language α β n n∗

English 4.4 0.60 8.3 7

French 4.9 0.60 10.1 8

Hungarian 6.7 0.64 11.9 10

Finnish 6.8 0.58 13.4 12

Korean 8.2 1.65 6.2 5

Hindi 6.0 0.94 7.7 6

Tagalog 6.0 0.73 8.8 8

Burmese 2.6 0.28 12.8 9

Table 1. Numerical values of the fitted parameters α and β entering the Gamma form (17) of the
word length distribution, and of the resulting average and most probable word lengths n and n∗

(see (18)), for all languages shown in Figure 1.

For our purposes, the relevant concept of a word length is the number of its

sounds, since we are here concerned with hearings and mishearings. Fortunately,

it turns out that there is a high degree of correlation between the length distribu-

tions of written words (numbers of letters) and spoken words (numbers of ‘sounds’,

which here represent phonemes), for most languages. As a matter of fact, sounds

and letters enjoy a near one-to-one correspondence in ancient languages like Latin

or Greek, so that their length distributions for written and spoken words are vir-

tually identical. We would therefore expect that this high degree of correspondence

between phonology and orthography would persist in modern languages; and have,

in order to confirm this expectation, performed a preliminary analysis of this ques-

tion in the case of three languages (German, Dutch and English), based on the

CELEX database [3]. Our main conclusion is that there is a fixed ratio r ≈ 0.85

between the numbers of sounds and letters in typical words [26]: we obtain nearly

identical values of r for unique words (when every word of the lexicon is counted

once) and token words (when words are counted according to their frequencies of

occurrence). Furthermore, this value of the ratio r appears to have a high degree of

universality and in particular, does not show any appreciable difference among the

three languages we have tested.

We will, in what follows, therefore use the length distribution of written words

(measured by numbers of letters and parametrised by the Gamma distribution (17))

as a proxy for that of spoken words (measured by numbers of sounds). Our frame-

work of the modelling of mishearings and the ensuing statistics of word variants (de-

rived in Section 2.1) will also be extensively used in the next sections, where we will

continue with our assumption of a structureless lexicon. The only language-specific

ingredients entering our work will be the parameters α and β in the parametrisa-

tion (17) of the word length distribution, which are listed in Table 1 for all languages

shown in Figure 1.
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3. The statics of word recognition

3.1. Decrypting words – the easy-to-hard transition

A key feature of speech decryption is that the number of variants induced by mis-

hearings should not be too large. In this section we first define a threshold δn,

which determines the difficulty of decryption in terms of a simple ratio involving

the numbers of words and their variants. Another meaningful quantity which we

introduce in this context is δnst
, which describes the onset of word lengths which

are so large that decryption becomes very difficult; this occurs both because the

words themselves are exceptionally long and therefore rare, and because they gen-

erate huge numbers of variants. Finally, we introduce a mechanism by which most

words are actually recognised: this is the phenomenon of anticipation where, part

way through a word, a listener can guess what it actually is. In the concluding parts

of this section, we quantify the phenomenon of anticipation: first, in the absence

of mishearings, and then, in their presence. Our results demonstrate that the phe-

nomenon of word anticipation is much more efficient in the former case compared

to the latter, which is intuitively reasonable.

For a language with an overall lexicon size Λ and an arbitrary word length

distribution pn, we expect that it would be easy to recognise a word w of length n

if the average number Ωn of its variants is much smaller than the total number

Wn = Λpn (19)

of words of length n. This criterion is conveniently measured by the effective expo-

nent

δn =
lnΩn

lnWn

=
κn

ln Λpn
. (20)

This quantity has a rich non-linear dependence on the word length n. Its numer-

ator grows linearly with n, as a consequence of (8), with κ defined in (9). Its de-

nominator involves the full word length distribution, parametrised as (17), with

language-specific parameters α and β. The introduction of the n-dependent scaling

exponent δn is one of the novel features of our work, allowing for the application of

concepts stemming from finite-size scaling. This demarcation of complexity by size

is strikingly reminiscent of problems encountered in combinatorial optimisation [12,

34, 31, 18].

For the typical parameter values q = 0.2 and Λ = 105, the effective exponent δ∗,

corresponding to the most probable word length n∗ of all languages shown in Fig-

ure 1, is tabulated in Table 2. We note that, while δ∗ is small, it is significantly

larger than the corresponding value (12) for a free lexicon with no constraint on the

word length distribution; this suggests that constraints make word identification

more difficult, as might be expected.

For very long words, two effects appear. First, the length distribution pn falls

off very fast, so that the corresponding words are genuinely rare; second, the sheer

length of the word generates hugely many variants in the presence of mishearings.
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Language δ∗ nst mant

English 0.14 25 4

French 0.16 26 5

Hungarian 0.20 27 7

Finnish 0.24 29 8

Korean 0.09 15 3

Hindi 0.11 20 4

Tagalog 0.15 23 5

Burmese 0.19 32 6

Table 2. Values of characteristic quantities pertaining to our static approach to speech recognition
(see Sections 3.1 and 3.2), for all languages shown in Figure 1: δ∗ is the effective exponent δn of (20)
measured for the most probable word length n∗, whereas nst is the static crossover length such that

δnst = 1 (see (21)), and mant is the anticipation length in the absence of mishearings (see (25)).
Word length distributions are parametrised according to (17), with fitted parameters α and β
given in Table 1. Other parameter values are q = 0.2, Λ = 105 and ε = 1/20.

Eq. (20) shows that these parallel effects cause the effective exponent δn to increase

rapidly with the word length n. Word recognition becomes very hard when n reaches

the static crossover length nst, such that

δnst
= 1. (21)

This crossover length, where speech recognition becomes suddenly hard, is anal-

ogous to the occurrence of the static easy-to-hard phase transition met with in

typical hard combinatorial problems [12, 34, 31, 18]. Since word lengths are always

finite, any potential phase transition is of course rounded to a crossover; also, and

equally clearly, its exact location depends on the number chosen on the right-hand

side of the definition (21). However, and despite these quantitative caveats, the

analogy of the crossover (21) with the easy-to-hard combinatorial phase transition

is striking.

The static crossover length nst defined in (21) is also given in Table 2 for all

languages shown in Figure 1: note that this is typically three times larger than

the average word length n in each case (see Table 1). Words that are equal to or

larger than this value in length are in the tails of the distribution; while they are

not numerous – typically no more than a few hundreds – their rarity adds to the

complexity of their decryption, as mentioned above.

3.2. Word anticipation with no mishearings

How do we decrypt individual words? A major role is played by the phenomenon

of anticipation, where we expect to hear a particular word on the basis of the first

few sounds that we hear. In this section, we will assume that both speakers and

listeners are perfect, i.e., that no mishearings occur, while in the following one, we

will see what happens when listeners mishear what has been said.



10 Mehta and Luck

Assume the listener has heard a string

s = σ1 . . . σm (22)

of m sounds. The string s coincides with the first m sounds of some set of words w

of the lexicon of length n ≥ m; we therefore say that it is a prefix of each of those

words.

The number Sn of word prefixes of length n can be estimated by merely assuming

that each prefix s has a small probability ε to be an exact word, with ε being of

the order of 1/ν. This yields

Sn =
Wn

ε
=

Λpn
ε

. (23)

The average number fm of words with the string s as a prefix is given by:

fm =
1

Sm

∑

n≥m

Wn =
ε

pm

∑

n≥m

pn. (24)

As the number m = 1, 2, 3, . . . of heard sounds increases, the number of remain-

ing possibilities decreases sharply. Usually, one is able to guess the word at a certain

point before the word has ended: we call this the anticipation length mant, at which

the number of remaining words becomes of the order of one:

fmant
= 1. (25)

The anticipation length mant is also given in Table 2 for all languages shown in

Figure 1. This length is always smaller than the most probable word length n∗,

as might be expected for an anticipation effect. This concept, to which we give a

quantitative underpinning here, is referred to as the uniqueness point in linguistics,

e.g. in cohort models [24, 28]. The strength of the anticipation effect is measured

by the ratio mant/n∗. For the choice of ε = 1/20, and for the languages we have

considered, this ratio is nearly constant, suggesting that we can predict a typical

word about two-thirds of the way through it.

3.3. Word anticipation in the presence of mishearings

Everyday experience tells us that mishearings make it difficult to recognise, never

mind anticipate, spoken words. We would therefore expect that with enough mis-

hearings, the anticipation of words would disappear entirely, which is indeed what

our formalism predicts.

From now on, we consider the situation where each sound is misheard with

probability q, according to the rules (4). Assume the listener has heard a string

t = τ1 . . . τm (26)

ofm sounds. This string may be the outcome of the random insertion of any number

k = 0, . . . ,m of mishearings into an existing word prefix s of length m. For a fixed
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number k of mishearings, the mean number of words w compatible with the heard

prefix t reads therefore

gm,k = 2kfm. (27)

This expression can be visualised as a ‘hammock plot’ (upper panel of Figure 2)

of gm,k against the prefix length m, for model parameters corresponding to English

(see Table 1) and ε = 1/20. The number k of mishearings is denoted by the symbol

colours. The number of words varies over so large a range that a logarithmic scale

is needed.

0 2 4 6 8 10 12 14 16
m
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 g

m
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Fig. 2. Plots of ln gm,k (upper panel) and of ln gm (lower panel) against prefix length m for model
parameters corresponding to English (see Table 1) and ε = 1/20. In the upper panel, the number
k = 0, . . . , m of mishearings is denoted by the symbol colours (black, red, green, blue, etc. denote
k = 0, 1, 2, 3, . . . ). In the lower panel, colours denote values of the mishearing probability q (see
legend). The thick purple curve corresponds to the threshold value qth = 0.1805.
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As before, the anticipation threshold is defined as the first point at which only

one word remains possible. This amounts, in the present instance, to setting gm,k =

1, which is shown in the upper panel of Figure 2 as a thick red horizontal line. Note

that for the case of no mishearings, we have k = 0 and gm,k = fm, corresponding

to the lowest branch of the plot (black symbols). The fact that this crosses the

red line at m = 4 provides a consistency check with the fact that the onset of

the anticipation effect for English in the absence of mishearings, mant, is indeed 4

(see Table 2).

The average number gm of remaining possible words after a sequence t of

length m is heard can be evaluated by averaging the expression (27) over the known

distribution of the number k of mishearings (see (7)):

gm = eκmfm. (28)

As the mishearing probability q increases, the exponential factor eκm in the above

expression increases rapidly, leading to a progressive weakening of the anticipation

effect until it disappears above some threshold qth. This threshold is defined as the

point at which the minimum of gm over all prefix lengths m becomes unity. In the

plot of ln gm against the prefix length m in the lower panel of Figure 2, this happens

for the third curve from the top (thick purple curve), where the minimum grazes the

red line corresponding to gm = 1. The corresponding threshold reads qth ≈ 0.18:

for q less than this value (lower four curves of the plot), gm always crosses the red

line, so that anticipation is possible even in the presence of mishearings. On the

other hand, for q larger than qth (upper two curves of the plot), gm stays above 1,

so that there are too many variants for anticipation to be effective.

Table 3 gives the numerical values of the threshold mishearing probability qth
for all languages shown in Figure 1, as well as the corresponding values of the prefix

length mth where the minimum is reached at threshold and of the effective expo-

nent δth. For all languages considered here mth and n∗ are nearly equal (compare

Table 1 and Table 3), suggesting that the most probable word length n∗ in a given

language nearly optimises the possibility of decryption despite mishearings. The

corresponding effective exponent δth is much less than unity, the value of δ at the

static easy-to-hard transition δnst
. This important distinction makes it clear that

while δnst
epitomises the difficulty of recognising very long and complex words, δth

corresponds to the befuddling effect of multiple mishearings, which can set in for

words of even moderate sizes.

4. The dynamics of word recognition

In the above, we have only considered static aspects of word recognition. Here we

turn our attention to the dynamics of this process: more specifically, what is the

effect of mishearings on the time it takes for a listener to recognise a given word?

Does it matter if these mishearings appear individually or if they are consecutive,

and form a cluster of mishearings? Recalling that until now we have only addressed
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Language qth mth δth
English 0.18 7 0.12

French 0.15 9 0.14

Hungarian 0.12 12 0.14

Finnish 0.09 14 0.14

Korean 0.45 5 0.19

Hindi 0.26 6 0.15

Tagalog 0.18 8 0.14

Burmese 0.08 11 0.09

Table 3. Values of characteristic quantities pertaining to our approach to word anticipation in
the presence of mishearings (see Section 3.3), for all languages shown in Figure 1: qth is the
threshold value of the mishearing probability at which the anticipation effect disappears, whereas

mth and δth are respectively the corresponding prefix length and effective exponent. Word length
distributions are parametrised according to (17), with fitted parameters α and β given in Table 1.
Other parameter values are Λ = 105 and ε = 1/20.

the total number of mishearings in a given word, with no positional information,

the following intuitive approach at least gives us a hint of the difference between

individual and collective impediments to word recognition.

We proceed in the spirit of an analogy with jammed granular media (see e.g. [29]

and references therein), an example of an athermal and disordered system like our

own. Prior to jamming in a shaken assembly of grains, a tracer grain can navigate

its way past individual grains that only partially obstruct it; however, as the density

increases, the obstacles represented by clusters of grains make it impossible for it to

move beyond them, and this complete obstruction leads to jamming. In the present

scenario, a low density of mishearings, whether isolated or contiguous, leads to a

reasonable possibility of ‘escape’ for a listener from a situation of complete misun-

derstanding. In contrast, when there are many clusters of consecutive mishearings,

the large number of variants essentially makes decryption impossible.

More specifically, we visualise the speech recognition algorithm as a random

walker on a network with traps, where the latter correspond to mishearings. A

low density of traps causes the slowing down of the random walker; as the density

increases, the traps are more and more likely to occur contiguously, in clusters. In

the latter case, dynamical arrest may result if the random walker has to traverse

paths crossing arbitrarily large clusters of traps.

To reiterate – we have so far characterised speech recognition from a static

viewpoint, focusing on the statistics of mishearings in a word w of length n. This

was done by computing the average number Ωn of variants per word of length n

(see (8)), and the corresponding static exponents δ (see (11)) or δn (see (20)).

We now approach the problem from a dynamical point of view: how does a

speech recognition algorithm react to a string of sounds that are being successively

presented to it in real time? The analogies given above suggest that a cluster of
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successive mishearings would clearly present a far greater obstacle to speech recog-

nition than a few isolated ones. We therefore proceed by attributing a (dynamical)

penalty, in the form of a statistical weight λk, to any set of k successive mishear-

ings. This penalty should increase rapidly with the cluster size k, as larger clusters

of mishearings will more significantly slow down the task of decryption. It should

also be proportional to the complexity associated with the task of exploring such a

cluster in an ordered way, and thus to the number of its possible permutations.

This intuitive line of reasoning leads us to associate cluster weights that grow

factorially with a cluster of k consecutive mishearings:

λk = µk k!. (29)

The constant µ is a phenomenological parameter which cannot be estimated a priori.

The full dynamical complexity of deciphering a typical word of length n is thus

represented by the partition function Zn associated with a chain of length n in the

presence of the cluster weights λk. From the formal definition of these quantities

and their subsequent analysis in Appendix A, we obtain a logarithmic growth of

the free energy density (see (A.19)):

Kn ≈ ln
µqn

e
. (30)

The resulting superextensive growth of the total free energy lnZn = nKn implies

that the effective dynamical exponent,

∆n =
lnZn

lnWn

=
nKn

ln Λpn
, (31)

grows more quickly with word length n than its static counterpart δn (see (20)).

Proceeding to define the dynamical crossover length ndyn by the condition

∆ndyn
= 1, (32)

we assert that for large enough word lengths and sufficiently high q, large clusters

of mishearings will arrest the speech recognition algorithm at ndyn, well before the

static crossover length nst is reached (see below).

The above ideas have a wealth of analogies in statistical and condensed matter

physics. In addition to the dynamical arrest in granular media referred to above, sim-

ilar dynamical transitions in diffusive motion have been widely observed in glasses

(see e.g. [17, 27, 7, 20]), as well as via the occurrence of Anderson localisation,

be this in disordered conductors (see e.g. [19, 1]) or in the multiple scattering of

light (see e.g. [39, 35]). From a more theoretical point of view, a well-documented

instance of slowing down from diffusive to sub-diffusive transport is provided by

random walks on comb structures, in the regime where the mean value of the teeth

depth diverges (see e.g. [15]).

In summary, our intuitive arguments above suggest that decryption in the pres-

ence of mishearings involves two successive thresholds as a function of word length n,

viz. the dynamical length ndyn (32) and the static one nst (21). Both crossover
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lengths depend on the lexicon size Λ, the mishearing probability q, and the lan-

guage under consideration, through the parametrisation (17) of the word length

distribution. A subtlety is that the dynamical crossover length ndyn also depends

on the unknown parameter µ. The upper limit of this dynamical length is naturally

provided by the static length nst, to which it becomes equal at a critical value µc.

Whenever µ > µc, the dynamical length ndyn exhibits a slow decrease as a func-

tion of µ; at any particular value of the latter, the dynamical transition precedes

the static transition, as it must. In the opposite regime (µ < µc), both static and

dynamical transitions merge into a single one.

This is demonstrated in Figure 3 for two languages, Finnish and Burmese, which

we have chosen because they have relatively high values of nst (see Table 1). The

dynamical length ndyn varies over a broad range extending from the average word

length n to the static crossover length nst, where the latter corresponds to word

lengths deep in the tails of the distribution. For languages such as English, the

picture is qualitatively similar, although the range over which ndyn varies is smaller.

0 0.5 1 1.5 2µ
10

15

20

25

30

35

n dy
n

Finnish
Burmese

Fig. 3. Dynamical crossover length ndyn against parameter µ, for Finnish and Burmese. Thick full
horizontal lines: static crossover length nst. Dashed horizontal lines: average word length n. Word
length distributions are parametrised according to (17), with fitted parameters α and β given in
Table 1. Other parameter values are q = 0.2 and Λ = 105.

5. Discussion

We have in the above built a simple and intuitive model of speech perception.

A unique feature of our model is the representation of mishearings via a single

parameter, the mishearing probability q, providing a measure of the fraction of

sounds that can be misheard in a given language. We go on to obtain intuitive
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predictions in a series of scenarios relating to word recognition. In the absence

of mishearings, we predict the existence of a threshold after which a word can

be correctly guessed, viz. the anticipation length mant; this provides a quantitative

underpinning to a related concept in linguistics, the uniqueness point. We follow this

with the consideration of anticipation in the presence of mishearings; as expected

the phenomenon disappears above a threshold mishearing probability qth.

A limitation of our current approach is that it proceeds by considering the

fate of ‘typical’ words, thereby following a mean-field approach, where the role of

fluctuations as well as correlations is neglected. Thus, we are so far unable to include

positional information in our analysis – e.g. the relative difficulty of decryption

depending on whether mishearings occur at the beginning or the end of a word [23],

which is clearly important for real-world decryption. We aim to include the effect

of such and other correlations in future work [26].

A leitmotif underpinning our work is the idea that speech perception is a prob-

lem of optimisation. We have identified a static easy-to-hard transition in terms of

word length, after which spoken words are very hard to decipher. This occurs for

words in the tails of the word length distribution, whose lengths are greater than

the threshold static length nst; we have defined δnst
as a measure of the difficulty

of decryption in this limit of long and typically rare words. In the presence of mis-

hearings, however, decryption can be difficult for words of even moderate size; the

quantity δth defined above embodies the difficulty of decryption in the presence of

multiple mishearings.

The dynamics of speech recognition takes these ideas a step further, and exam-

ines the relative difficulties presented by isolated versus consecutive mishearings to

word recognition: everyday experience tells us that clusters of consecutive mishear-

ings are likely to provide far greater impediments to decryption than isolated ones.

The dynamical complexity of such clusters increases with their size, a feature which

is modelled by the association of appropriate statistical weights with them. The

task of the speech recognition algorithm is to navigate these obstacles and correctly

identify the word concerned, which becomes unfeasible beyond some dynamical

length ndyn, where clusters of contiguous mishearings can successfully arrest recog-

nition. This phenomenon is associated with a dynamical transition which, as in the

case of many other complex systems, precedes the static transition occurring at nst.

We suggest that the dynamical transition is intimately associated with the phe-

nomenon of ‘underspecification’ proposed by Lahiri et al [25]. Put simply, this in-

volves the storage of all possible word variants corresponding to a set of mishearings

in the listener’s memory, until an individual word is correctly recognised at a suitable

point in a sequence of sounds. The presence of clusters of contiguous mishearings

will cause this list to be hugely amplified, until accurate word recognition is impos-

sible. Clearly, this can happen even for words close to the average word length n,

i.e., the dynamical transition ndyn can set in for word lengths that vary between n

and the static crossover length nst.

A possible experiment to test this would involve tests carried out on ensembles of
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listeners with similar linguistic abilities in a given language, who would be subjected

to ever-increasing clusters of contiguous mishearings in individual words; datasets

would comprise words with lengths between n and nst. The objective would be to

identify a threshold of incomprehension for most listeners which, if found, would

represent the dynamical transition ndyn. Our work in this paper suggests that this

should set in well before the static crossover length nst, for typical world languages.
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Appendix A. Chains with intra-cluster interactions

This appendix is devoted to the evaluation of the partition function Zn of a binary

chain of length n with arbitrary intra-cluster interactions. This quantity enters the

definition (31) of the effective dynamical exponent ∆n.

We consider the setting of the site percolation problem (see e.g. [38]). Most

notations are chosen for the sake of consistency with the body of the paper. Each site

is either occupied with probability q, or empty with the complementary probability

p = 1− q. Furthermore, arbitrary statistical weights λk are attached to each cluster

of k ≥ 1 consecutive occupied sites:

◦ • •
λ2

◦ ◦ ◦ •
λ1

◦ ◦ • • •
λ3

◦ • •
λ2

◦ ◦ • • • •
λ4

◦ ◦
(A.1)

The total weight of a configuration is the product of the weights λk over all

clusters. The partition function Zn is the sum of these total weights over the 2n

configurations of an open finite chain of n sites, where each configuration is at-

tributed a probability stemming from the site percolation problem. The partition

function can be evaluated by means of recursion relations, somewhat along the lines

of the transfer-matrix formalism (see e.g. [4, 9]). In the present situation, it is useful

to write

Zn = Z◦
n + Z•

n, (A.2)

where Z◦
n (resp. Z•

n) are the partial partition sums over configurations whose left-

most site is empty (resp. occupied). The latter quantities obey the recursion rela-

tions

Z◦
n = pn +

n−1∑

m=1

pmZ•
n−m, Z•

n = λnq
n +

n−1∑

m=1

λmqmZ◦
n−m. (A.3)

The above equations are self-explanatory. The summation index is nothing but the

size m = 1, . . . , n − 1 of the leftmost cluster of empty sites in the first equation,



18 Mehta and Luck

of occupied sites in the second one. These recursion equations can be solved by

introducing the generating series

G◦(z) =
∑

n≥1

Z◦
nz

n, G•(z) =
∑

n≥1

Z•
nz

n, (A.4)

which obey

G◦(z) =
pz

1− pz
(1 +G•(z)), G•(z) = L(z)(1 +G◦(z)), (A.5)

with

L(z) =
∑

k≥1

λkq
kzk. (A.6)

We thus obtain

G◦(z) =
pz(1 + L(z))

1− pz(1 + L(z))
, G•(z) =

L(z)

1− pz(1 + L(z))
, (A.7)

and finally

G(z) =
∑

n≥1

Znz
n = G◦(z) +G•(z) =

pz + (1 + pz)L(z)

1− pz(1 + L(z))
. (A.8)

We are mostly interested in the asymptotic growth of the partition function Zn

for large chain lengths n. This growth law obeys the following dichotomy:

• If the cluster weights λk are bounded by an exponential of k, the generating

series L(z) has a non-zero radius of convergence. As a consequence, the

partition function Zn grows exponentially with the chain size n. This is in

agreement with the existence of a well-defined thermodynamic limit where

the total free energy is extensive, i.e.,

lnZn ≈ nK. (A.9)

The free energy density K per site is given by the property that

z∗ = e−K (A.10)

is the smallest zero of the denominator of (A.8).

It is worth considering a few examples.

For exponential cluster weights λk = µk, introducing these weights boils

down to the renormalisation of q into the product µq. We accordingly obtain

the simple result

K = ln(p+ µq). (A.11)

For linear cluster weights λk = ak, we obtain a cubic equation for z∗:

(1 − pz∗)(1 − qz∗)
2 = apqz2∗. (A.12)

For quadratic cluster weights λk = bk2, we obtain a quartic equation:

(1 − pz∗)(1 − qz∗)
3 = bpqz2∗(1 + qz∗). (A.13)



Hearings and mishearings: decrypting the spoken word 19

The two latter examples demonstrate that the expression of the free energy

soon becomes quite intricate.

• If the cluster weights λk grow faster than any exponential, the generating

series L(z) has a vanishing radius of convergence. In such a circumstance,

the partition function is dominated by the configuration where all sites are

occupied, i.e.,

Zn ≈ qnλn. (A.14)

The first correction to this leading result originates in the two configurations

where only the first (or last) site is empty, yielding

Zn = qnλn

(
1 +

2pλn−1

qλn

+ · · ·

)
. (A.15)

The correction term is negligible for large chain sizes, precisely because the

cluster weights have a superexponential growth. The result (A.14) can be

recast as

lnZn = nKn, (A.16)

where the effective free energy is superextensive, as its density

Kn ≈ ln q +
lnλn

n
(A.17)

keeps growing indefinitely with the chain size n.

The situation where cluster weights grow factorially, according to

λk = µk k!, (A.18)

plays a key role in the body of this paper (see (29)). There, the asymptotic growth of

the above cluster weights is only marginally superexponential, as the corresponding

free energy density exhibits a logarithmic growth, according to

Kn ≈ ln
µqn

e
. (A.19)

This is illustrated in Figure 4, showing plots of the free energy density Kn against n

for several values of the parameter µ.
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