
Introduction to Computing in the Oxford Physics Course

Being able to write a computer program is an important skill for all physicists. In physics, computing is

mainly required for the following types of task:

1. Analysis of experimental data

2. Solving numerical problems such as differential equations

3. Controlling scientific instruments and acquiring data from them

We aim to teach you all these skills during your time in Oxford. In the first year we focus on the first two

aspects. The third aspect is generally learnt by doing experiments in the teaching labs, where you will

experience some data acquisition software during first year practicals. You will spend more time writing

your own code for data acquisition and control in the second and third year lab experiments.

Physicists use many different computing packages, and our philosophy is to expose you to a range of

different programming environments during your time in Oxford, so that, like professional physicists,

you learn to choose which you prefer for different tasks. In the first year we teach you two

programming languages, RStudio (which uses an underlying language called R) and Matlab. Your first lab

classes will be introductory exercises in both languages.

Many modern computing languages are interchangeable in the sense they can all be used to carry out

the tasks above, although there are a few differences between languages, which you will learn about in

the computing lectures. In the first year, we encourage you to use RStudio for data analysis, whereas

Matlab is used to train you mainly in solving numerical problems.

Here we provide some introductory resources that use free and friendly web-based tools to get you

used to the basics of computing. We also provide resources for a third language, Python, which we do

not formally teach, but is easy to learn, and popular with scientists due to its versatility. Python and

R/RStudio are open source which means they are free to download and use, whereas Matlab needs a

license and cannot be downloaded in its full form before you arrive in Oxford. All three systems are

essentially independent of operating system i.e. it will not make a difference if you try something on a

Mac at home and use a Windows machine in Oxford, or vice versa.

We strongly recommend that you do EITHER

 BOTH the online introductions to Matlab and R/RStudio. Then download R/RStudio and do the

short data analysis exercises provided.

 OR the CodeAcademy Python course

Matlab

An online introduction to Matlab, Matlab Onramp, is available here:

https://matlabacademy.mathworks.com/

The course is web-based (you must register with the provider) and uses an interface similar to Matlab. It

covers the basics of programming in Matlab and develops many of the skills you will need for the first

year computing course. The course providers suggest that the course will take about two hours. You can

work through the sections in any order.

https://matlabacademy.mathworks.com/

If you do want to try out the full version of Matlab before you come to Oxford, a free 30-day trial can be

downloaded.

https://uk.mathworks.com/programs/trials/trial_request.html

RStudio (R)

The recommended introductory course is called Try R:

http://tryr.codeschool.com/

Like the Matlab course, this uses a web interface that is similar to R, but does not require you to

download the full package. It provides a simple introduction to many of the key concepts, starting at a

very basic level. The sections must be worked through in order, but they are all short.

R can be downloaded from here:

https://cran.r-project.org/

The R interface is relatively simple, and very similar to the Try R environment, with a window to enter

commands (called the “command line”) and with plots appearing in an adjacent window. Once you have

completed TryR online, you should download and install R and do the data analysis exercises that we

provide (at the end of this document for now, but will need a link) in the command line.

In the Physics Teaching Labs we use RStudio, which is a more “friendly” interface for programming in R,

and provides more “point and click” functionality. The underlying language is exactly the same. RStudio

can be downloaded here (note that you will need to download R first)

https://www.rstudio.com/products/rstudio/download/

Python

CodeAcademy run a good introductory Python course:

https://www.codecademy.com/

This online course is longer (13 hours) and goes further than the others. It also provides more general

background to programming than the Matlab and R courses, though all are equally good at introducing

their language. For this reason, if you take this course you will be well prepared to start our computing

course.

Notes

 We regret that we are not able to provide IT support before you attend the introductory

lectures at the start of Michaelmas Term, however there are many web resources available

beyond the ones we have listed here.

 We do not recommend any specific operating systems or types of computer. We have Windows,

Mac and Linux systems available for undergraduate use, and our students buy many different

types of personal computer.

https://uk.mathworks.com/programs/trials/trial_request.html
http://tryr.codeschool.com/
https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://www.codecademy.com/

Introductory Data Analysis with R

Before starting, you should have completed the TryR online course, and downloaded R to your own

computer. Most of the concepts are discussed in our bridging material on Data Analysis and Statistics,

so it is also a good idea to look at this beforehand. The material is module 2 in the Physics Bridging

programme accessed via https://mplsbridging.conted.ox.ac.uk/ and you will be sent a username and

password from MPLS to access this material.

These exercises use a dataset from the famous Michelson-Morley experiment, in which the speed of

light in air was measured in 1879. The dataset is conveniently already stored in R, where it is called

“morley”. To look at it, you can just type

morley

into the command line. Because the dataset contains 100 numbers and a header, you probably won’t be

able to see it all. A more useful way to quickly inspect the data is to try

head(morley)

which only shows the first few lines of data. The first column gives the row number, and the other three

columns are labelled. Each row represents a speed (labelled Speed) recorded in a particular “run” (Run),

and in this case the data are divided into five groups of 20, each labelled an “experiment” (Expt). The

speeds are in units of kms-1 after subtracting 299 000 kms-1. You can see the speed data by typing:

morley$Speed
plot(morley$Speed)

One way to obtain a visual overview of data is to produce a histogram. In a histogram, rectangles are

used to represent frequency, with the area of each rectangle proportional to the frequency. A histogram

of the Michelson Morley data can be generated with:

hist(morley$Speed)

If you want to edit the histogram bins, colour and/or labels, these can be added by expanding the

hist() command as follows:

hist(morley$Speed,breaks=25,col="darkgray",xlab="speed - 299 000 km/s")

The concepts of mean and median are probably familiar from school maths, and are also mentioned in

our Data Analysis bridging material. They can be displayed (remembering to include the offset

subtracted earlier), with the following commands:

mean(morley$Speed) + 299000
median(morley$Speed) + 299000

R includes functions that make it very simple to work out the standard deviation and variance of a data

set (again, these are explained fully in Data Analysis). To save time typing, we can define a variable

called Speed before calculating its variance and standard deviation:

Speed = morley$Speed
var(Speed)
sd(Speed)

https://mplsbridging.conted.ox.ac.uk/

Finally, the summary command is a useful way to get an overview of a dataset. This lists the minimum,

maximum, median, mean, first and third quartiles. (If you don’t understand any of these quantities,

check Data Analysis again.)

summary(Speed)

Note that the summary(morley) command also works (try it), although it is not particularly helpful for

this dataset. To continue working out some of the quantities in Data Analysis, how would we calculate

the standard error in the speed measurement? There is no single command for standard error, but it is

easy to calculate, using the length function to work out the number of data points

N=length(Speed)
sd(Speed)/sqrt(N)

Reference

This material is mainly taken from Scientific Inference: Learning with Data by Simon Vaughan (CUP,

2014)

http://www.star.le.ac.uk/sav2/stats.html

http://www.star.le.ac.uk/sav2/stats.html

